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1 Introduction

Imagine three different dices A, B and C. Two players start a game where each one choose

a dice and roll it, the one who gets the higher value on the dice wins the game, and if that

is a tie, they must roll the dice again until there is a winner. The intransitive question is:

is it possible to create dice A, B an C such that A is better than B, B is better than C

and C is better than A? The answer is, surprisingly, yes! A set of dice with such property

is called non-transitive or intransitive set of dice, or intransitive dice, for short.

Recently, some research has been developed on the study of intransitive dice, including

a project by Polymath[1]. In this study, among other things, the group examined the

probability of a die A being better than a die C, given that A is better than die B and B

is better than die C.

We characterize the existence of intransitive sets of fair dice in general and in a new,

more natural model of dice called the weighted model, in which a biased die with n sides has

faces with numbers from 1 to n.

The main result of this text is a version of the celebrated central limit theorem. Let

(An)n∈N, (Bn)n∈N, and (Cn)n∈N be sequences of iid random variables with a uniform dis-

tribution on the interval (0, 1), and let X, Y , and Z be standard normal variables such

that

Cov (X, Y ) = Cov (X,Z) = Cov (Y, Z) = −1

2
.

If we define

An =
n∑

i=1

n∑
j=1

χAi>Bj
,

Bn =
n∑

i=1

n∑
j=1

χBi>Cj
,

Cn =
n∑

i=1

n∑
j=1

χCi>Aj

and if Ãn, B̃n, and C̃n are their respective standardized versions, the following theorem

holds.

Theorem 5.0.3. The random vector (Ãn, B̃n, C̃n) converges in distribution to (X, Y, Z) as

n → ∞.

A direct consequence of this theorem is that the probability of three dice being intran-

sitive tends to 0 as n grows

4



2 Definitions

An n-sided die is a pair (A,α), where A is the vector (A1, . . . , An), with each Ak being

the number on the face k, and α is a random variable taking values on {1, 2, ..., n}. The

die is said to roll the face k with probability P(α = k) and results Ak. If this probability

equals 1/n for every k, the die is said to be honest, fair, or unbiased. Otherwise, it is said

to be unfair or biased (the reason for the latter will be clarified afterward). If there is no

ambiguity, the die will be denoted as A, and in that case, it is useful to denote the random

result of A in a roll by ρ(A).

A die A is said to be better than a die B, and it is denoted by A▷B if the probability

of A rolling a higher value than B is greater than the probability of B rolling a higher value

than A. To the same extent, the die B is said to be worse than A, and it is denoted by

B ◁ A.

An indexed family {D(1), D(2), . . . , D(n)} of dice is said to be intransitive if there exists a

permutation σ such that Dσ(1)▷Dσ(2)▷. . .▷Dσ(n)▷Dσ(1). Note that while ▷ is an asymmetric

relation, it is not necessarily transitive, so it does not define an order relation.

Although it is usually noted the similarity between specifics sets of intransitive dice and

the game “Rock, Paper, Scissors” and its variations, such as “Rock, Paper, Scissors, Lizard,

Spock” (RPSLS, for short. See, for example, [2] and [3]), there is an intrinsic difference

between the two games, in a sense that, while paper always beats rock, rock always beats

scissors and so on, there still exists the possibility of a die A being beaten by a die B,

even though A is better than B. Figure 1 exhibits diagrams of professor James Grime’s set

of intransitive dice [2] and the game of RPSLS and the respective probability of “items”

beating each other.

It then raises a question, is it possible to construct a set of n dice D(1), D(2), . . . , D(n)

such that it closely resembles a game of paper, scissors, or rock? That is, is it possible that

D(1) almost always beats D(2), D(2) almost always beats D(3), in general, the die D(k) almost

always beats the die D(k+1), and D(n) almost always beats D(1)? That is not possible.

Theorem 2.0.1. Let D(1), . . . , D(n) be a set of dice such that P(ρ(D(k)) > ρ(D(k+1))) > 1−ε,

for each 1 ≤ k ≤ n− 1 and some ε > 0. Then, P(ρ(D(n)) > ρ(D(1))) < (n− 1)ε.

Proof. Let E1, E2, and E3 be the events in which ρ(D(1)) > ρ(D(2)), ρ(D(2)) > ρ(D(3)) and

ρ(D(1)) > ρ(D(3)) respectively.

It is evident that

P(E1 ∩ E2) ≤ P(E3)

5



A

2

2

2

7

7

7

B

0

5

5

5

5

5

C

3

3

3

3

8

8

D

1

1

6

6

6

6

E

4

4

4

4

4

9

0.58

0.56

0.56

0.56

0.58

0.67

0.69

0.67

0.72 0.72

Paper

Rock

Lizard Spock

Scissors

1

1

1

1

1

1

1

1

1 1

Figure 1 – Grime’s dice (left) and the game of Rock, Paper, Scissors, Lizard, Spock (right)

and, by the inclusion-exclusion principle,

P(E1 ∩ E2) = P(E1) + P(E2)− P(E1 ∪ E2)

> 1− 2ε

Applying the same argument recursively for D(1), D(k), D(k+1),

P(ρ(D(1)) > ρ(D(n))) > 1− (n− 1)ε,

and the result is immediate.

3 Deterministic Models of Dice

3.1 Dice as Strings

The case where the dice are honest, no faces are shared between two dice and no dice have

repeated faces is of particular interest since it enables the use of different representations

for a set of dice. One of which is denominated the string representation. 1

Suppose thatD(1), D(2), . . . , D(m) are honest n-sided dice such that there are no repeating

values on the faces through all dice. Therefore, it is possible to sort all the faces of the dice

by value inputs and create a descending sequence that is given by some permutation of the

faces of D(1), D(2), . . . , D(m). It then generates a unique string that represents the set of

1 The idea of translating the dice as strings was inspired by the excellent video made by the YouTube
channel Polylog: “We designed special dice using math, but there’s a catch”.
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dice. This process for three 4-sided dice is represented in Figure 2. In this chapter, all the

dice will always be treated as honest.

A 12

8

4

3

B 11

7

6

2

C 10

9

5

1

A 12 8 4 3

B 11 7 6 2

C 10 9 5 1

a b c c a b b c a a b c

Figure 2 – An example of a triple of dice and its representation as a string.

Note that this sequence makes explicit that, when comparing the faces of the dice, one

only cares about the relative position of the value in this sequence created. Therefore it is

possible to exchange values by some symbolic representation of the dice the value belongs to

without losing the information necessary to compare the dice. With the string, to compare

die D(2) to D(1) is to sum how many letters s(1) are to the right of every letter s(2). The

result is how many possible victories D(2) has over D(1). This relation D(1) ▷ D(2) has a

natural translation when comparing strings; therefore, the same notation may also be used

in this context.

In the depiction of Figure 2, the obtained string uses a, b, and c to represent values of

the respective A, B, and C die. This gives abccabbcaabc. It is possible to extend this process

to any number of dice with any number of faces, given that they fulfill the requirement of

not repeating values between them or in themselves.

To compare only two dice of the string, it is enough to remove all letters that are not

representative of the dice of interest, and without loss, one can compare the two within the

sub-sequence created. In the example given, to compare the dice A and B, analyze the

sub-sequence generated by removing the c’s: abccabbcaabc → ababbaab. Again, the problem

is resolved by comparing the relative position of the letter in the string. Sum how many b’s

are to the right of every a to obtain the number of victories of a over b and vice-versa.

Definition 3.1.1. A string is said to be of characteristic m and denoted as Sm if it is
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composite of exactly m distinct letters.

In the particular case where all m distinct letters on a string have the same number n of

occurrences, this string is said to be balanced and of order n, and shall be denoted as Sm,n.

Particularly useful classes of strings also include the ones that correspond to sets of

intransitive and neutral dice. The last correspond to sets of dice where every die beats any

other die the same amount of times. Results regarding these strings include the following

lemmas

Lemma 3.1.2. Let Ns(1)>s(2) be the number of wins of s(1) over s(2) in a string Sm,n, then

the number of wins of s(2) over s(1) in S∗ is N∗
s(2)>s(1)

= Ns(1)>s(2), where S∗ denotes the

reverse of S.

Proof. Note that, for every sub-sequence s(2)s(1) of Sm,n formed by the ith s(1) and jth s(2),

there is a corresponding sub-sequence s(1)s(2) in S∗
m,n, formed by the (m − i)th s(1) and

(m− i)th s(2). Since Ns(1)>s(2) is the sum, for every s(1) on the string, of the amount of s(2)’s

on Sm,n, it follows immediately that N∗
s(2)>s(1)

= Ns(1)>s(2) .

Lemma 3.1.3. If Sm,2l is a symmetric string where every letter s(i) has exactly 2l occur-

rences, then Sm,2l is neutral.

Proof. Since Sm,2l is symmetric, it can be written as the concatenation of a string Sm,l and

it’s reverse S∗
m,l.

It is valid to write for each pair of letters s(i) and s(j) that

Ns(i)>s(j) +N∗
s(i)>s(j) +m2 = Ns(j)>s(i) +N∗

s(j)>s(i) +m2

Where terms on the expression came from Sm,l and S∗
m,l and a coupling term.

By Lemma 3.1.2 it is known that Ns(i)>s(j) = N∗
s(j)>s(i)

and that Ns(j)>s(i) = N∗
s(i)>s(j)

,

proving the Lemma.

Lemma 3.1.4. Let Sm,n be an intransitive string. Then there is a string Sm+1,n that is also

intransitive.

Proof. Suppose, without loss of generality, that s(1) ▷ . . . ▷ s(m) ▷ s(1), and let S(m+1),n be the

string obtained by replacing every occurrence of s(m) by s(m)s(m+1).

Note that the relation between any two letters in s(1), . . . , s(m) is preserved in S(m+1),n,

also, note s(m+1) ▷ s(1) in S(m+1),n, as the sub-sequence consisting only of s(m+1) and s(1), is

equivalent to the one formed only by s(m) and s(1).

8



It is easy to see that sm ▷ sm+1, as the sub-sequence formed by them, is of the form

smsm+1 . . . smsm+1︸ ︷︷ ︸
n

, and the number of sm+1 at the left of each sm is always bigger than the

converse.

Therefore, S(m+1),n is intransitive with s(1) ▷ . . . ▷ s(m) ▷ s(m+1) ▷ s(1).

Notice that by inserting a new die, the values of the faces of each die are possibly shifted,

so there’s no guarantee that any die that was part of the first intransitive set also belongs

to the second one.

Lemma 3.1.5. A string S3,2 can not be intransitive.

Proof. Let S3,2 be a string in which s(1) ▷ s(2) ▷ s(3). This way, the letters s(2) must come

at least three times at the right of the letters s(1). That implies that at least one letter s(1)

has to come at the left of both letters s(2). In the same way, at least one letter s(2) has to

come at the left of both letters s(3). But if that happens, one can conclude that at least one

letter s(1) comes at the left of both letters s(3), and this set can not be intransitive.

Lemma 3.1.6. Let Sm,n and Im,2k common lettered strings be intransitive and neutral,

respectively. Then Im,2kSm,n is an intransitive string.

Proof. Similarly to the demonstration of 3.1.3, the juxtaposition of Im,2k introduces (2k)2

2

victories of any letter s(1) on Im,2k over any other letter s(2) in Im,2k, and 2kNs(1)>s(2) victories

of s(1)’s on I2k over s(2)’s on Sn. So, if

Ns(1)>s(2) > Ns(1)>s(2)

The following result holds

2k2 + 2kNs(1)>s(2) +Ns(1)>s(2)︸ ︷︷ ︸
N ′

s(1)>s(2)

> 2k2 + 2kNs(1)>s(2) +Ns(1)>s(2)︸ ︷︷ ︸
N ′

s(1)>s(2)

Since the concatenation preserved the inequalities, it follows that I2kSn is intransitive.

Lemma 3.1.7. Let Sm,n be an intransitive string. Then there is Sm,(n+2) that is also in-

transitive.

Proof. Let Sn be an intransitive string. In the interest of creating a new string of higher

order, take the juxtaposition of Sn and a symmetric string as done in Lemma 3.1.6. By

choosing the lowest order of such a string, the new intransitive string will represent a set of

(n+ 2)-sided dice.
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Theorem 3.1.8. For every n ≥ 3 and m ≥ 3 there are intransitive strings of characteristic

m and order n.

Proof. By Lemma 3.1.5, there is no intransitive string that represents three 2-sided dice. It

is sufficient to show that exists an intransitive string representing three 3-sided dice, such

as the first example in Figure 3 and an intransitive string representing three 4-sided dice,

such as the second example in Figure 3. The rest follows from induction on m and n from

both examples.

A

95

1

B

84

3

C

76

2

abccabbca

A 12

6

5

3

B 11

9

4

2

C 10

8

7

1

abcbccaababc

Figure 3 – Set of three three-sided and four-sided intransitive dice

Table 1 shows the existence proved in theorem 3.1.8. It is, as shown, possible to determine

all possible cases of existence created by combining m and n.

3.2 Weighted Model

The most natural way to create a die is to consider an n-sided die with numbers from 1 to

n on its faces. At first, it does not seem possible to construct a set of intransitive dice since

all dice would be the same. But it is possible if the dice are biased.

An n-sided biased die (A,α) is non-degenerate if P(α = k) > 0, for every 1 ≤ k ≤ n.

If, furthermore, A = (1, 2 . . . , n), the die A will be simply called a weighted die. Note
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m
n

2 3 4 5 6 7 . . .

3 × ✓ ✓ ✓ ✓ ✓ . . .
4 × ✓ ✓ ✓ ✓ ✓ . . .
5 × ✓ ✓ ✓ ✓ ✓ . . .
6 × ✓ ✓ ✓ ✓ ✓ . . .
7 × ✓ ✓ ✓ ✓ ✓ . . .
...

...
...

...
...

...
...

. . .

Table 1 – Existence of fair dice with no repetition

that P(ρ(A) = k) = P(α = k). In that case, for any λ > 0 the vector λ · (P(ρ(A) =

1), . . . ,P(ρ(A) = n)) is called a weight vector of A. Conversely, if a = (a1, . . . , an), with

ai ∈ R∗
+, there exists only one weighted n-sided dice (A,α) such that

P(ρ(A) = k) = ak/SA,

where SA =
∑n

i=1 ai, so that a is a weight vector of the die A.

If A and B are biased n-sided dice with weights (a1, . . . , an) and (b1, . . . , bn), respectively,

it is easy to show that

P(ρ(A) > ρ(B)) =
1

SASB

n∑
i=2

i−1∑
j=1

aibj.

It is possible to create intransitive weighted dice, but they cannot have less than four

sides.

Lemma 3.2.1. If A, B and C are weighted 3-sided dice such that A ▷ B ▷ C, then A ▷ C.

Proof. As A ▷ B,

P(ρ(A) > ρ(B)) > P(ρ(B) > ρ(A))

=⇒ a2b1 + a3(b1 + b2) > b2a1 + b3(a1 + a2)

=⇒ (a2 + a3)(b1 + b2) > (b2 + b3)(a1 + a2).

Similarly, (b2 + b3)(c1 + c2) > (c2 + c3)(b1 + b2).

Multiplying both inequalities and using the fact that (b1 + b2), (b2 + b3) > 0, it follows

that (a2 + a3)(c1 + c2) > (c2 + c3)(a1 + b2) and, therefore, A ▷ C.

It is now easy to prove that ifD(1), . . . , D(n) are weighted 3-sided dice, thenD(1)▷. . .▷D(n)

implies that D(1) ▷ D(n).

The next two lemmas will be useful for what follows.

11



Lemma 3.2.2. If A and B are weighted n-sided dice with weight vectors a and b, respec-

tively, such that A ▷ B, then the weighted die C with weight vector sa + tb, for s, t > 0,

satisfies A ▷ C ▷ B.

Proof. On the one hand,

n∑
i=2

i−1∑
j=1

ai(saj + tbj) = s

n∑
i=2

i−1∑
j=1

aiaj + t

n∑
i=2

i−1∑
j=1

aibj

> s
n∑

i=2

i−1∑
j=1

aiaj + t

n∑
i=2

i−1∑
j=1

biaj

=
n∑

i=2

i−1∑
j=1

(sai + tbi)aj.

On the other hand,

n∑
i=2

i−1∑
j=1

(sai + tbi)bj = s
n∑

i=2

i−1∑
j=1

aibj + t
n∑

i=2

i−1∑
j=1

bibj

> s
n∑

i=2

i−1∑
j=1

biaj + t
n∑

i=2

i−1∑
j=1

bibj

=
n∑

i=2

i−1∑
j=1

bj(sai + tbi).

Lemma 3.2.3. If there exist m weighted n-sided intransitive dice, then m weighted (n+1)-

sided intransitive dice exist.

Proof. Let D1 . . . , Dm be the intransitive dice and d(1), . . . ,d(m) be their respective weight

vectors, where d(i) = (d
(i)
1 , . . . , d

(i)
n ) and D1 ▷ . . . ▷ Dm ▷ D1.

For each 1 ≤ k ≤ m, define the function fk : R
m(n+1) → R by

fk(x
(1), . . . ,x(m)) =

n+1∑
i=2

i−1∑
j=1

(x
(k)
i x

(k+1)
j − x

(k+1)
i x

(k)
j ),

where x(k) = (x
(k)
1 , . . . , x

(k)
n+1) ∈ Rn+1 and x(n+1) is defined as x(1).

Now, if d = (d(1), 0,d(2), 0, . . . ,d(m), 0), the intransitivity of the dice implies that fk(d) >

0, for every k.

As, for each k, fk is a continuous function, there is an εk > 0 such that if ∥x−d∥∞ < εk

then fk(x) > 0. Let ε = min{ε1, . . . , εm} and d′ = (d(1), ε/2,d(2), ε/2, . . . ,d(m), ε/2). Then

fk(d
′) > 0 for each k and if D′

i is defined as a biased (n + 1)-sided die with weight vector

(d(i), ε/2), the dice D′
1, . . . , D

′
m satisfy D′

1 ▷ . . . ▷ D
′
m ▷ D′

1.

12



One might be interested then in determining which combinations of the number of dice

and faces enable the creation of a set of intransitive dice. The Theorem 3.2.4 gives the

conclusion.

Theorem 3.2.4. For every m ≥ 3 and n ≥ 4, there exist m weighted n-sided dice that are

intransitive.

Proof. It suffices to show one example for m = 3 and n = 4. The rest follows by induction

on m and n. Figure 4 shows such an example.

A 3

1

1

3

1

2

3

4

B 2

1

4

1

1

2

3

4

C 1

4

1

2

1

2

3

4

Figure 4 – A set of intransitive 4-sided biased dice. The numbers outside are the faces of
the dice, and the numbers inside are the respective weights

It is possible to illustrate the existence of the sets in table 2. This theorem shows the

existence of all possible intransitive sets created by combining m and n.

m
n

2 3 4 5 6 7 . . .

3 × × × × × × . . .
4 × ✓ ✓ ✓ ✓ ✓ . . .
5 × ✓ ✓ ✓ ✓ ✓ . . .
6 × ✓ ✓ ✓ ✓ ✓ . . .
7 × ✓ ✓ ✓ ✓ ✓ . . .
...

...
...

...
...

...
...

. . .

Table 2 – Existence of intransitive set of weighted dice
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4 Random Models of Dice

To study different distribution properties of dice, such as the proportion of intransitive ones

in a given model, it is helpful to define the concept of random dice.

Definition 4.0.1. The n-sided die A is called a random die if its n faces A1, A2, . . . , An

are iid random variables.

For what follows, it is assumed that all random dice are fair.

If A and B are random n-sided dice, the number of wins of A over B given by

NA>B =
n∑

i=1

n∑
j=1

χAi>Bj

is now a random variable.

4.1 Continuous Uniform Distribution

Suppose A(n), B(n) and C(n) independent random dice with n sides in which A
(n)
k , B

(n)
k , C

(n)
k

∼ U(0, 1), where U(0, 1)k denotes the uniform distribution on the set (0, 1)k, so that

(A(n), B(n), C(n)) ∼ U(0, 1)3n.

Let Dn be the subset of points of (0, 1)3n in which the coordinates are pairwise distinct.

Then, Dn has measure 1 and (A(n), B(n), C(n)) ∈ Dn with total probability.

Note that if (a, b, c) ∈ Dn, where a, b, c ∈ (0, 1)n, then, using a construction similar

to the one in Subsection 3.1, there exists only one string s associated to this point with n

occurrences of each of the letters a, b and c, in which the letter a is associated to a, the

letter b is associated to b and the letter c is associated to c, furthermore, the fair n-sided

dice (a, α), (b, β) and (c, γ) are intransitive if, and only if, the string s is intransitive.

Define the relation R on Dn such that xRy if and only if sx = sy, where sx is the string

associated to x and sy the string associated to y. Then R is clearly an equivalence relation,

and the quotient set Dn/R has a natural one-to-one correspondence with the set Sn of all

the strings with n occurrences of each of the letters a, b and c. It is easy to check that each

class in Dn/R is an open set of R3n, and, therefore, is measurable.

Symmetry arguments show that each class has the same measure, so if D(n) is the

number of equivalence classes of Dn/R or, similarly, the number of strings in Sn, and x is

any equivalence class, then

∑
y∈Dn/R

λ3n(y) = λ3n

 ⋃
y⊂Dn/R

y
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= λ3n(Dn)

= 1

=⇒ D(n)λ3n(x) = 1,

where λk is the Lebesgue measure of Rk. But then

P((A(n), B(n), C(n)) ∈ x) =
1

D (n)
.

Particularly, if I (n) is the number of classes in D/R represented by intransitive strings, or,

analogously, the number of strings in In, where In ⊂ Sn is the set of intransitive strings,

and Jn is the union of all these classes, then the probability of the dice A(n), B(n) e C(n) be

intransitive is given by

P((A(n), B(n), C(n)) ∈ Jn) =
I (n)

D (n)
,

so that to understand the probability of choosing intransitive dice randomly, it is enough to

study the sets Dn and In. The table 4.1 shows the values of I(n) for n between 1 and 10,

calculated with the assistance of a computer.

n I (n) D (n) I(n)/D(n)
1 0 6 0
2 0 90 0
3 30 1680 0.017857
4 78 34650 0.002251
5 10392 756756 0.013732
6 64230 17153136 0.003744
7 4186398 399072960 0.010490
8 39236706 9465511770 0.004145
9 1920331578 227873431500 0.008427
10 22545898302 5550996791340 0.004061

Table 3 – Values of I(n), D(n) and I(n)/D(n) for 1 ≤ n ≤ 10. Note how the ratios
I(n)/D(n) seem to be lower for even n. The decrease in ratios for even n may be
due to neutral strings only being possible for even n, leading to fewer intransitive
strings proportionally.

A simple combinatorial argument shows that

D (n) =
(3n)!

(n!)3
.

Additionally, using the Stirling approximation, it can be shown that

D (n) ∼
√
3

2πn
33n.

Determining an asymptotic expression for I (n) is not so straightforward.

15



Note that, if s ∈ In is a string such that b ▷ a ▷ c ▷ b, then the string s′, obtained by

switching all the letters a for b and vice-versa, satisfies a ▷ b ▷ c ▷ a, so that the set In can

be partitioned in two sets, In = Ia
n ∪ Ib

n, where Ia
n is the subset of strings in which a ▷ b ▷ c

and Ib
n is the subset of strings in which b ▷ a ▷ c, and, therefore, there exists an one-to-one

correspondence between Ia
n and Ib

n. Then,

#Ia
n = #Ib

n =
I (n)

2
=: I ′(n).

Proposition 4.1.1. If r ∈ Ia
m and s ∈ Ia

n, then rs ∈ Ia
m+n

Proof. The new count of victories of a over b is made similarly to the one in the proof of

Lemma 3.1.6, that is, if N r
a>b, N

s
a>b and N rs

a>b are the number of a over b victories in the

strings r, s and rs, respectively, and defining N r
b>a, N

s
b>a and N rs

b>a in an analogous way,

then

N rs
a>b = N r

a>b +N s
a>b +mn

> N r
b>a +N s

b>a +mn

= N rs
b>a

Corolary 4.1.2. If m and n are positive integers, then I ′(m+ n) ≥ I ′(m)I ′(n)

Proof. If r1, r2 ∈ Ia
m e s1, s2 ∈ Ia

n, Then it is easy to see that r1s1 = r2s2 if, and only if,

r1 = r2 and s1 = s2. Thus, by the multiplication principle, #{rs : r ∈ Ia
m and s ∈ Ia

n} =

I ′(m)I ′(n) and the result follows from the fact that {rs : r ∈ Ia
m and s ∈ Ia

n} ⊂ Ia
m+n.

Theorem 4.1.3. There exists a constant L ∈ (2.314, 3 log 3] such that

I ′(n) = e nL(1+o(1)).

Proof. Suppose m,n ≥ 3. Then

log I ′(m+ n) ≥ log I ′(m) + log I ′(n).

By Fekete’s lemma, there exists L satisfying

lim
n→∞

log I ′(n)

n
= sup

n

log I ′(n)

n
= L.

Equivalently,

log I ′(n)

n
= L(1 + o(1))
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=⇒ I ′(n) = e nL(1+o(1)).

Examining the Table 4.1, it is possible to see that

L ≥ log I ′(10)

10
≈ 2.3146.

On the other hand, from the fact that I ′(n) ≤ D(n), it follows that

L = lim
n→∞

log I ′(n)

n
≤ lim

n→∞

logD(n)

n
= 3 log 3.

The value of L is unknown, but computational simulations of I(n)/D(n) suggest that

L = 3 log 3.

Conjecture 4.1.4. L is equal to 3 log 3.

Turning back the attention to the random variables, define An = NA(n)>B(n) , Bn =

NB(n)>C(n) and Cn = NC(n)>A(n) . See that the dice A(n), B(n) and C(n) are intransitive if, and

only if, either An,Bn, Cn > n2/2 or An,Bn, Cn < n2/2, so that

I (n)

D (n)
= P((A(n), B(n), C(n)) ∈ Jn)

= P(An,Bn, Cn > n2/2) + P(An,Bn, Cn < n2/2)

= P(Ãn, B̃n, C̃n > 0) + P(Ãn, B̃n, C̃n < 0), (1)

where

Ãn =
An − n2/2√
n2(2n+ 1)/12

,

B̃n =
Bn − n2/2√
n2(2n+ 1)/12

,

C̃n =
Cn − n2/2√
n2(2n+ 1)/12

.

5 Central Limit Theorem for Continuous Uniform Distribution

The random variablesAn,Bn and Cn have a close resemblance to the variables in the standard

version of the Central Limit Theorem. However, the indicator functions χAn
i >Bn

j
are not an

independent random variable. Thus, it is natural to search for a version of this celebrated

theorem for these variables.

To state the theorem, first, it is necessary to compute the mean and the variance of the

variables, which can be calculated as follows.
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Note that, as A
(n)
i and B

(n)
j are iid and have a continuous distribution, then

P(A(n)
i > B

(n)
j ) = P(B(n)

i > A
(n)
j ) =

1

2
,

so that

E [An] = E

[
n∑

i=1

n∑
j=1

χ
A

(n)
i >B

(n)
j

]

=
n∑

i=1

n∑
j=1

E
[
χ
A

(n)
i >B

(n)
j

]
=

n∑
i=1

n∑
j=1

P(A(n)
i > B

(n)
j )

=
n2

2

To compute the second moment of An, note that, using the symmetry of the distribution,

P(A(n)
i , A

(n)
j > B

(n)
k ) = P(A(n)

i > B
(n)
j , B

(n)
k ) =

1

3

E
[
A2

n

]
= E

[(
n∑

i1=1

n∑
j1=1

χ
A

(n)
i1

>B
(n)
j1

)(
n∑

i2=1

n∑
j2=1

χ
A

(n)
i2

>B
(n)
j2

)]

=
n∑

i1=1

n∑
j1=1

n∑
i2=1

n∑
j2=1

E
[(

χ
A

(n)
i1

>B
(n)
j1

)(
χ
A

(n)
i2

>B
(n)
j2

)]

=
n∑

i1=1

n∑
j1=1

n∑
i2=1
i2 ̸=i1

n∑
j2=1
j2 ̸=j1

E
[(

χ
A

(n)
i1

>B
(n)
j1

)(
χ
A

(n)
i2

>B
(n)
j2

)]

+
n∑

i1=1

n∑
j1=1

n∑
i2=1
i2 ̸=i1

E
[(

χ
A

(n)
i1

>B
(n)
j1

)(
χ
A

(n)
i2

>B
(n)
j1

)]

+
n∑

i1=1

n∑
j1=1

n∑
j2=1
j2 ̸=j1

E
[(

χ
A

(n)
i1

>B
(n)
j1

)(
χ
A

(n)
i1

>B
(n)
j2

)]

+
n∑

i1=1

n∑
j1=1

E
[(

χ
A

(n)
i1

>B
(n)
j1

)(
χ
A

(n)
i1

>B
(n)
j1

)]

=
n∑

i1=1

n∑
j1=1

n∑
i2=1
i2 ̸=i1

n∑
j2=1
j2 ̸=j1

P(A(n)
i1

> B
(n)
j1

)P(A(n)
i2

> B
(n)
j2

)

+
n∑

i1=1

n∑
j1=1

n∑
i2=1
i2 ̸=i1

P(A(n)
i1

, A
(n)
i2

> B
(n)
j1

)
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+
n∑

i1=1

n∑
j1=1

n∑
j2=1
j2 ̸=j1

P(A(n)
i1

> B
(n)
j1

, B
(n)
j2

)

+
n∑

i1=1

n∑
j1=1

P(A(n)
i1

> B
(n)
j1

)

= n2(n− 1)2
(
1

2

)2

+ n2(n− 1)

(
1

3

)
+ n2(n− 1)

(
1

3

)
+ n2

(
1

2

)
= (3n2(n− 1)2 + 8n2(n− 1) + 6n2)

1

12

= (3n4 − 6n3 + 3n2 + 8n3 − 8n2 + 6n2)
1

12

= (3n4 + 2n3 + n2)
1

12
,

then,

Var (An) = E
[
A2

n

]
− E [An]

2

= (3n4 + 2n3 + n2)
1

12
−
(
n2

2

)2

=
n2(2n+ 1)

12
.

Analogously,

E [An] = E [Bn] = E [Cn] =
n2

2

and

Var (An) = Var (Bn) = Var (Cn) =
n2(2n+ 1)

12
=: σ2.

Therefore, the variables Ãn, B̃n and C̃n in Equation 1 are just the standardized versions

of An,Bn and Cn.

Denote the standard normal distribution byN (0, 1) and letX, Y, Z ∼ N (0, 1) be random

variable such that Cov (X, Y ) = Cov (X,Z) = Cov (Y, Z) = −1/2. There is a close relation

between the number of victories of the dice and these variables.

Lemma 5.0.1. The PDF of the multivariate normal (X, Y, Z) is

f(x, y, z) =
1

3π
e −−2

9
(x2+y2+z2−xy−xz−yz)

and (X, Y, Z) ∈ G with probability 1, where G = {(x, y, z) : x+ y + z = 0}.

In particular, Dom(f) = G.
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Proof. This lemma is a direct consequence of the results in [4]. The covariance matrix of

U = (X, Y, Z) is

Σ =

 1 −1
2

−1
2

−1
2

1 −1
2

−1
2

−1
2

1

 .

Note that the eigenvalues of Σ are λ1 = λ2 = 3/2 and λ3 = 0. Furthermore, it is easy to

verify that Σ+ = 4
9
Σ is the pseudoinverse of Σ. As rankΣ = 2 and the mean of U , µ, is the

null vector, it follows that the PDF of U is given by

f(x, y, z) =
1√

(2π)2λ1λ2

e
− 1

2
( x y z )Σ+( x y z )T

=
1

3π
e − 2

9
(x2+y2+z2−xy−xz−yz).

Finally, if N = ( 1 1 1 )T , then NTΣ = 0, so that NTU = 0 with probability 1.

Corolary 5.0.2. If α, β and γ are real numbers, the the mth moment of αX + βY + γZ is

E [(αX + βY + γZ)m] =

0, if m is odd,

(m− 1)!!(α2 + β2 + γ2 − αβ − αγ − βγ)m/2 if m is even.

Proof. This follows from a direct computation of said moments using Isserlis’ theorem or

even by direct means.

The following theorem is the main result of this report, and it can be generalized to a

much wider range of distributions under certain hypotheses, which will be done in a later

paper.

Theorem 5.0.3. The random vector (Ãn, B̃n, C̃n) converges in distribution to (X, Y, Z) as

n → ∞.

Proof. From Cramér-Wold theorem, it suffices to show that αÃn+βB̃n+γC̃n
d→ αX+βY +

γZ, for each α, β, γ ∈ R. The method of moments is used to prove this, as the normal is a

variable uniquely determined by its moments. Let Ān, B̄n and C̄n be the centered variables,

so that Ān = σÃn and so on. Thus, if m ≥ 0 is a whole number,

E
[
(αÃn + βB̃n + γC̃n)m

]
=

1

σm
E
[
(αĀn + βB̄n + γC̄n)m

]
.

Note that σm ∼ n3m/2 · 6−m, so that it suffices to find a good estimate of

E
[
(αĀn + βB̄n + γC̄n)m

]
. (2)
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Define aij = α(χ
A

(n)
i >B

(n)
j

− 1/2), bij = β(χ
B

(n)
i >C

(n)
j

− 1/2) and cij = γ(χ
C

(n)
i >A

(n)
j

− 1/2).

It follows that

αĀn =
∑

1≤i,j≤n

aij, βB̄n =
∑

1≤i,j≤n

bij, γC̄n =
∑

1≤i,j≤n

cij.

If, furthermore, V = {a11, a12, . . . , ann, b11, . . . , bnn, c11, . . . , cnn}, then

E
[
(αĀn + βB̄n + γC̄n)m

]
=
∑
e1∈V

· · ·
∑
em∈V

E [e1e2 . . . em] .

The product e1 . . . em can be viewed as a graph G with vertices in

{A(n)
1 , . . . A(n)

n , B
(n)
1 , . . . B(n)

n , C
(n)
1 , . . . C(n)

n }

and each ek is an edge:

• If ek = aij, for some i and j, then ek links the vertices A
(n)
i and B

(n)
j ;

• If ek = bij, for some i and j, then ek links the vertices B
(n)
i and C

(n)
j ;

• If ek = cij, for some i and j, then ek links the vertices C
(n)
i and A

(n)
j .

In this case, the graph G constructed in this way is said to be a σ-graph. It is an important

fact that no two vertices of the “same type” are linked; that is, there is no edge of the type

{A(n)
i , A

(n)
j } and so on. In other words, the graph G is tripartite by the sets A(n), B(n) and

C(n). It is also important to note that some edges can appear multiple times in G. Finally, if
M is a constant such that |αpβqγr| < M for every 0 ≤ p, q, r ≤ m, which does not depend on

n, from the fact that |aij/α|, |bij/β|, |cij/γ| ≤ 1 for each i, j, it follows that |e1 . . . em| ≤ M ,

so that

|E [e1 . . . em] | ≤ M,

for any choice of edges ei.

Suppose that G has t connected components, where t ≤ m, possibly with repeated edges,

and, as the product of ei commutes, let e1 . . . em = p1p2 . . . pt, where each pk is a different

connected component of G. Then

E [e1e2 . . . em] = E [p1]E [p2] . . .E [pt] .

In fact, if i ̸= j, then pi and pj have no vertices in common, and thus they are independent

variables in the probability sense.

Now, if ei is an isolated edge, that is, ei forms a connected component on its own (with

no multiplicity), as E [ei] = 0, then E [e1e2 . . . em] = 0.
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Claim 1. There are at most K1n
(3m−1)/2 σ-graphs with less than m/2 connected com-

ponents, where K1 does not depend on n.

Let us find an upper bound on the number of σ-graphs with t connected components.

First, choose the first edge of each component. For the first component, the first edge can

be chosen in at most 9n2 ways (a maximum of 3n ways for the first vertex of the edge and

a maximum of 3n ways for the second vertex). Similarly, there are at most 9n2 options

for the first edge of the second component, and so on. In total, there are no more than

(9n2)t = (3n)2t ways to choose the first edge of each component. Now the remaining m− t

edges need to be distributed. The first of these must be connected to some edge that has

already been chosen (the graph cannot have any more components), so the first vertex has

up to 2t possibilities, and the second has 3n possibilities, for a total of 3n(2t) choices. For

the second edge of the remaining ones, there are no more than 2t+1 possibilities for the first

vertex (the edge allocated previously can add at most one possibility), and no more than

3n options for the second vertex, for a total of 3n(2t+1) options. Repeating this argument

recursively, for the last of the m − t edges, there are a maximum of 3n(2t + (m − t − 1))

scenarios. In total, there are at most

(3n)2t · (3n(2t)) · · · · · ·(3n(2t+m− t− 1)) ≤ (2m)m(3n)2t+m−t = (18m)mnm+t

possibilities.

Having chosen the m edges, say, ei1 . . . eim , they can come from any of the m factors of

the power in Equation 2, and thus such a graph can appear up to m! times.

In total, the sigma-graphs with t connected components appears no more than k1n
m+t

times, where k1 = m! · (18m)m. Therefore, there are at most

k1(n
m+1 + nm+2 + · · ·+ nm+(m−1)/2) ≤ mk1n

(3m−1)/2

σ-graphs with less than m/2 connected components (as t < m/2, then t ≤ (m − 1)/2,

because t and m are whole numbers). If K1 = mk1, then K1 does not depend on n, and the

claim is proved.

Claim 2. If the σ-graph that represents e1 . . . em has more than m/2 connected com-

ponents, then E [e1 . . . em] = 0.

As there are more than m/2 connected components and only m edges, at least one of

the components must be an isolated edge, so the claim follows.

If m is odd, each of the σ-graphs must have less than m/2 connected components or

more than m/2 connected components. Therefore∣∣∣∣∣ ∑
e1,...,em∈V

E [e1 . . . em]

∣∣∣∣∣ ≤
m−1

2∑
t=1

∑
e1,...,em∈V

t

|E [e1 . . . em] |+
m∑

t=m+1
2

∑
e1,...,em∈V

t

|E [e1 . . . em] |
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≤
m−1

2∑
t=1

∑
e1,...,em∈V

t

M

≤ MK1n
3m−1

2 ,

The index t indicates that the summation extends over the graphs with t connected com-

ponents. But that implies, by the squeeze theorem, that

E
[
(αÃn + βB̃n + γC̃n)m

]
=

1

σm

∑
e1,...,em∈V

E [e1 . . . em] → 0.

Suppose, now, that m = 2k for some integer k. A similar argument shows that

k−1∑
t=1

∑
e1,...,em∈V

t

E [e1 . . . em] = o(n3k).

There is still a need to consider the case t = k. Thankfully, there are more simplifications

to be made.

Define the size of a connected component as the number of edges in said component,

counting multiplicity.

Claim 3. If the σ-graph that represents e1 . . . e2k has k connected components and some

component has size at least 3, then E [e1 . . . e2k]=0.

If every component has at least two edges, then the total number of edges of G is a

minimum of 3 + 2(k − 1) = 2k + 1, a contradiction. Then, at least one of the components

has only one edge; that is, at least one edge is isolated.

Claim 4. There are at most K2n
3k−1 σ-graphs with k connected components of size

two and at least one edge with multiplicity two, where K2 does not depend on n.

Let d be the number of edges with a multiplicity of two. Once again, there are up to

(3n)2k ways to choose the first edges of the k connected components. But now, d components

are entirely determined, with
(
k
d

)
≤ k! configurations. For each of the remaining k−d edges,

there are up to 6(k − d)n ≤ 6kn ways to choose from. Thus, including the (2k)! options to

choose from the 2k factors of the original power, there are no more than k2n
3k−d possibilities,

where k2 = 9k · (2k)!k! · (6k)k. Consequently, there are at most

k2(n
3k−1 + n3k−2 + · · ·+ n2k) ≤ K2n

3k−1

of such σ-graphs, where K2 = kk2 does not depend on n.

A connected component is a cherry if composed of two distinct edges. A graph is a

cherry graph if all its connected components are cherries. The vertex of degree 2 in a cherry
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graph will be called a joint, and the other two will be called tips. It follows that a cherry

graph has k connected components of size two with no repeating edges.

All the claims together imply that expected values of all the σ-graphs with less than

k connected components or with k connected components, each of size two and with at

least one double edge, amount to, at most, o(n3k) and that the σ-graphs with more than

k components or with k components, with at least one component having more than two

edges, disappear in the summation, that is,∑
e1,...,e2k∈V

E [e1 . . . e2k] =
∑

e1,...,e2k∈V
cherry

E [e1 . . . e2k] + o(n3k),

where the summation extends over all cherry σ-graphs.

What remains is to count all the cherry graphs and compute their expected values.

A cherry is of the type XY Z if its joint is in Y (n) and its tips are in X(n) and Z(n), where

each of X, Y, Z are one of the letters A,B,C. There are nine unique types of cherries:

1-A) Type CAB. It represents the product ckiaij (the indices i, j and k do not matter, as

all A
(n)
i , B

(n)
j and C

(n)
k are iid), so

E
[
CAB

]
= E [ckiaij]

= γαE
[(

χ
C

(n)
k >A

(n)
i

− 1

2

)(
χ
A

(n)
i >B

(n)
j

− 1

2

)]
= γα

(
P(Ck > Ai > Bj)−

1

4

)
= − 1

12
γα;

2-A) Type BAB. It represents the product aijaik, where k ̸= j.

E
[
BAB

]
= E [aijaik]

= α2E
[(

χ
A

(n)
i >B

(n)
j

− 1

2

)(
χ
A

(n)
i >B

(n)
k

− 1

2

)]
= α2

(
P(Ai > Bj, Bk)−

1

4

)
=

1

12
α2

3-A) Type CAC. It represents the product cjicki, where k ̸= j.

E
[
CAC

]
= E [cjicki]

= γ2E
[(

χ
C

(n)
j >A

(n)
i

− 1

2

)(
χ
C

(n)
k >B

(n)
i

− 1

2

)]
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= γ2

(
P(Cj, Ck > Ai)−

1

4

)
=

1

12
γ2

1-B) Type ABC. It represents the product akibij. It is similar to type CAB.

E
[
ABC

]
= E [akibij]

= − 1

12
αβ;

2-B) Type CBC. It represents the product bijbik, where k ̸= j. It is similar to type BAB.

E
[
CBC

]
= E [bijbik]

=
1

12
β2

3-B) Type ABA. It represents the product ajiaki, where k ̸= j. It is similar to type CAC.

E
[
ABA

]
= E [ajiaki]

=
1

12
α2

1-C) Type BCA. It represents the product bkicij.

E
[
BCA

]
= E [bkicij]

= − 1

12
βγ;

2-C) Type ACA. It represents the product cijcik, where k ̸= j.

E
[
ACA

]
= E [cijcik]

=
1

12
γ2

3-C) Type BCB. It represents the product bjibki, where k ̸= j.

E
[
BCB

]
= E [bjibki]

=
1

12
β2

Suppose that n ≫ k (n > 2k is enough), so there is enough freedom to count the cherry

graphs. Given the non-negative integers ai, bi, ci, i = 1, 2, 3, fulfilling
∑3

i=1 ai + bi + ci = k,

suppose that there are C(a1, . . . , c3) σ-graphs with ai cherries as described in i-A, bi cherries
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as described in i-B and ci cherries as described in i-C. The expected value of such a graph

is

E(a1, . . . , c3) := Ea1 [CAB]Ea2 [BAB]Ea3 [CAC]

× Eb1 [ABC]Eb2 [CBC]Eb3 [ABA]

× Ec1 [BCA]Ec2 [ACA]Ec3 [BCB].

Furthermore, given such a graph, all its edges are pairwise distinct so that it appears pre-

cisely (2k)! times in the summation. Thus,∑
e1,...,e2k∈V

cherry

E [e1 . . . e2k] =
∑

a1+···+c3=k

(2k)!C(a1, . . . , c3)E(a1, . . . , c3).

Let us calculate C(a1, . . . , c3). Choose a1, a2 and a3 distinct vertices from A(n) to be the

joints of the cherries of type 1-A, 2-A and 3-A, respectively, and b1, 2b3, c1 and 2c2 to be

tips of the cherries of type 1, 3-B and 1, 2-C, respectively. There are(
n

a1, a2, a3, b1, 2b3, c1, 2c2

)

possible ways to choose such vertices, where(
p

q1, . . . , qi

)
=

p!

q1! . . . qi!(p− q1 − · · · − qi)!

is the multinomial coefficient.

Similarly, there are (
n

b1, b2, b3, c1, 2c3, a1, 2a2

)

and (
n

c1, c2, c3, a1, 2a3, b1, 2b2

)

possible ways to choose the vertices from B(n) and C(n), respectively.

Having chosen the vertices, distribute them to their respective cherries. Fix the vertices

chosen to be joints in the natural order (A
(n)
1 , A

(n)
2 , . . . A

(n)
n and similarly to B(n) and C(n)).

Distribute the tips from A(n), and the other cases follow similarly. The tips from B(n) and
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C(n) are distributed in a complete analogous fashion. The b1 vertices chosen to be tips of

the type 1-B have b1 ways to be distributed to the b1 chosen from B(n) to be joints. The

2b3 vertices chosen to be tips of the type 3-B have (2b3)!/2
b3 possibilities to be distributed

(it is easier to think in terms of multinomial: choose two from the 2b3 options to the first

of the 2b3 vertices from B(n), then two to the next vertex and so on, with(
2b3

2, . . . , 2︸ ︷︷ ︸
b3

)
=

(2b3)!

2b3

possibilities). Similarly, there are c1! (resp. (2c2)!/2
c2) ways to distribute the tips from A(n)

of type 1-C (resp. 2-C). After distributing all the tips,

C(a1, . . . c3) =

(
n

a1, a2, a3, b1, 2b3, c1, 2c2

)
· b1! ·

(2b3)!

2b3
· c1! ·

(2c2)!

2c2

×
(

n

b1, b2, b3, c1, 2c3, a1, 2a2

)
· c1! ·

(2c3)!

2c3
· a1! ·

(2a2)!

2a2

×
(

n

c1, c2, c3, a1, 2a3, b1, 2b2

)
· a1! ·

(2a3)!

2a3
· b1! ·

(2b2)!

2b2

=
1

2a2+a3+b2+b3+c2+c3
∏3

i=1[ai!bi!ci!]

× n!

(n− a1 − a2 − a3 − b1 − 2b3 − c1 − 2c2)!

× n!

(n− b1 − b2 − b3 − c1 − 2c3 − a1 − 2a2)!

× n!

(n− c1 − c2 − c3 − a1 − 2a3 − b1 − 2b2)!
.

Now, see that

n!

(n− a1 − a2 − a3 − b1 − 2b3 − c1 − 2c2)!
= na1+a2+a3+b1+2b3+c1+2c2(1 + o(1))

= nk+b3+c2−b2−c3(1 + o(1)),

in such a manner that

C(a1, . . . , c3) =
1

2a2+a3+b2+b3+c2+c3
∏3

i=1[ai!bi!ci!]

× nk+b3+c2−b2−c3 · nk+c3+a2−c2−a3 · nk+a3+b2−a2−b3(1 + o(1))

=
n3k(1 + o(1))

2k−a1−b1−c1
∏3

i=1[ai!bi!ci!]
.

Therefore,
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∑
e1,...,e2k∈V

cherry

E [e1 . . . e2k] =
(2k)!n3k(1 + o(1))

2kk!

∑
a1+···+c3=k

(
k!∏3

i=1[ai!bi!ci!]

× (2E[CAB])a1Ea2 [BAB]Ea3 [CAC]

× (2E[ABC])b1Eb2 [CBC]Eb3 [ABA]

× (2E[BCA])c1Ec2 [ACA]Ec3 [BCB]

)
= (2k − 1)!!n3k(1 + o(1))

×
(
2E[CAB] + E[BAB] + E[CAC]

+ 2E[ABC]) + E[CBC] + E[ABA]

+ 2E[BCA] + E[ACA] + E[BCB]
)k

= (2k − 1)!!n3k(1 + o(1))

×
(
− γα

6
+

α2

12
+

γ

12

− αβ

6
+

β2

12
+

α2

12

− βγ

6
+

γ2

12
+

β2

12

)k

=
n3k

6k
(2k − 1)!!(α2 + β2 + γ2 − αβ − αγ − βγ)k(1 + o(1)),

and convergence of the moment follows.

By examining the previous arguments, the reader can understand the methodology used.

This can then be applied to similar situations with other types of distributions.

A direct application of the previous theorem is that the intransitive strings become quite

rare when n grows. In fact, the proportion of intransitive strings goes to 0.

Corolary 5.0.4. limn→∞ I (n) /D (n) = 0

Proof. From Equation 1 and Theorem 5.0.3, it follows that

lim
n→∞

I (n)

D (n)
= P(X, Y, Z > 0) + P(X, Y, Z < 0)

≤ P((X, Y, Z) ∈ Gc)

= 0,

as (x, y, z) ∈ Gc ⇐⇒ x+ y + z ̸= 0.

Actually, even the proportion of neutral string tends to 0 by a similar argument.

28



6 Conclusion

The study of intransitive dice was facilitated by defining good models to represent the

mathematical objects at play. In particular, the first results in this article were a consequence

of the string model employed. Using this helpful model, the existence of such intransitive dice

was fully characterized, that is, it was possible to determine the existence of an intransitive

family of dice for any given number of dice and sides for each die.

When defining models, it is necessary to impose certain restrictions on the set of dice.

For example, the initial string model employed in this study did not allow for repeated

values. To address this limitation, we introduced the weighted dice model, which provides an

analytical expression for comparing any two dice. This model allowed us to fully characterize

the existence of intransitive families of dice, similarly to what was achieved with the previous

model.

Having studied the existence of intransitive families of dice, new questions naturally

arose. One such question is the proportion of intransitive families in a given set of dice.

Progress was achieved in this problem by analyzing the model of random dice, which simu-

lates a random draw of dice from a set. This problem was then studied using two different

approaches, including a reinterpretation of the string model.

The string model allowed us to computationally explore the problem, which was crucial

for understanding the proportion of intransitive families of three dice, given by I (n) /D (n),

which in turn allowed us to find an asymptotic expression for the probability of three dice

being intransitive, but still with open problems to be solved.

The second approach focused on studying the number of wins of one die over another,

which is a random variable in the random dice model. This approach allowed us to demons-

trate a variation of the Central Limit Theorem with important consequences for the string

model.

In conclusion, these different models and approaches to solving the problems highlight

the importance of being open to using techniques from other areas of mathematics, even

when the areas don’t seem to have a clear relationship at first. This is especially evident

in the demonstration of Theorem 5.0.3, which utilized graphs to simplify the problem of

estimating the moments of the random variable αÃn + βB̃n + γC̃n.
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