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Abstract
Given a finite connected hypergraph 𝐻 , place a bin at each vertex. At discrete

times, a ball is added to each hyperedge. In a hyperedge, one of the bins gets the ball
with probability proportional to its current number of balls. This model was first
introduced by [BBCL15]. The convergence in the graph-based case was proved in
[BBCL15; CL14; Lim16], and, in this report, we prove a similar result about the
convergence of this process for the hypergraph-based case. This report was written
to summarize our results that were made on the event "Jornadas de Pesquisa" that
took place at ICMC-USP between 04/01/2023 and 10/02/2023.

1 Introduction
The classical Pólya’s urn is a sampling model that consists of an urn with balls of

two colors, e.g. blue and red. At each step, one ball is chosen at random from the urn
and then replaced at the urn together with a ball of the same color. We can reinterpret
the model by having two urns, one for each color, and adding balls to the pair of urns
at each step, choosing where the new balls go with probabilities proportional to the
current number of balls of each color. There are classical results relating to the almost
sure convergence and distribution of the proportions of balls of each color.

In [BBCL15], the authors considered a variation of the classical Pólya’s urn, called
graph-based Pólya’s urns and hypergraph-based Pólya’s urns. Let 𝐻 = (𝑉 ,𝐸) be a
finite connected hypergraph with 𝑉 = [𝑚] = {1,… , 𝑚} and |𝐸| = 𝑁 , and assume
that there is at each vertex 𝑖 a bin with 𝐵𝑖(0) ≥ 1 balls. Consider a random process
consisting of adding N balls to these bins according to the following rule: if the number
of balls after step 𝑛 − 1 at each vertex is 𝐵1(𝑛 − 1),… , 𝐵𝑚(𝑛 − 1), step 𝑛 consists in
adding, at each hyperedge 𝐼 , one ball for a vertex of 𝐼 in a way that the probability of
the ball being added to the vertex 𝑖 is

ℙ[𝑖 is chosen in 𝐼 at step 𝑛] =
𝐵𝑖(𝑛 − 1)

∑

𝑗∈𝐼 𝐵𝑗(𝑛 − 1)
.

Let 𝑁0 =
∑𝑚

𝑖=1 𝐵𝑖(0) be the initial number of balls and

𝑥𝑖(𝑛) =
𝐵𝑖(𝑛)

𝑁0 + 𝑛𝑁
, 𝑖 ∈ [𝑚],
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be the proportion of balls at the vertex 𝑖 after 𝑛 steps, then define
𝑥(𝑛) = (𝑥1(𝑛),… , 𝑥𝑚(𝑛)).

For graphs, when |𝐼| = 2 for all 𝐼 ∈ 𝐸, the results of [BBCL15], [CL14] and
[Lim16] can be summarized as follows:
Theorem. Let 𝐺 be a finite, connected graph.

(i) If 𝐺 is not balanced bipartite, then there’s a unique point 𝑣 = 𝑣(𝐺) such that
𝑥(𝑛) converges to 𝑣 almost surely.

(ii) If 𝐺 is balanced bipartite, then there’s a interval 𝒥 = 𝒥 (𝐺) such that 𝑥(𝑛)
converges to a point 𝑣 ∈ 𝒥 almost surely.

The approach to proving this theorem remains in the fact that sequence 𝑥(𝑛) is a
stochastic algorithm approximation. This allows us to see 𝑥(𝑛) as small perturbations
of a vector field 𝐹 , and relate the behavior of 𝐹 to that of 𝑥(𝑛). More details about this
algorithm and the vector field𝐹 will be given in Section 2. Our approach is basically the
same, since this is also true for hypergraphs, and, with some adaptations and new ideas
to generalize the arguments, we prove a similar theorem for the case of hypergraph-
based Pólya-urns.

Given a hypergraph 𝐻 , and a ordering of the hyperedges {𝐼1,… , 𝐼𝑁} in 𝐸, the
incidence matrix 𝐼(𝐻) = (𝑎𝑖𝑗) of 𝐻 is the 𝑁 × 𝑚 matrix, where 𝑎𝑖𝑗 = 1 if 𝑗 ∈ 𝐼𝑖, and
0, otherwise. Besides that, we define Γ = {(𝑥1,… , 𝑥𝑚) ∈ R𝑚 ∶ 𝑥1+⋯+𝑥𝑚 = 0}, that
is the tangent space with respect to the (𝑚+1)-dimensional simplexΔ = {(𝑥1,… , 𝑥𝑚) ∈
R𝑚 ∶ 𝑥1 +⋯ + 𝑥𝑚 = 1}.

Our main result is the following
Main Theorem. Let 𝐻 be a finite and connected hypergraph.

(i) If 𝐼(𝐻)|Γ is injective, then there is a unique deterministic point 𝑣 = 𝑣(𝐻) such
that 𝑥(𝑛) converges to 𝑣 almost surely.

(ii) If 𝐼(𝐻)|Γ is not injective and 𝑥(𝑛) doesn’t converge to 𝜕Δ, then there is a closed
subset ofΔ, 𝒥 = 𝒥 (𝐻), such that 𝑥(𝑛) converges to a point of𝒥 almost surely.

We denote by 𝜕Δ ⊂ Δ the set of the points with at least one coordinate equal to 0.
Let 𝑖𝑛𝑡(Δ) = Δ ⧵ 𝜕Δ. As is the case for graphs, in some cases 𝒥 can be a singleton and
the condition of the existence of an equilibrium in 𝑖𝑛𝑡(Δ) is not necessary. But when 𝒥
is not a singleton and 𝑥(𝑛) doesn’t converge to 𝜕Δ, the point to which 𝑥(𝑛) converges
depends on the realizations of the process.

As for the classical and graph-based Pólya urns, hypergraph-based Pólya urns can
be used to model even more complex situations. In [BBCL15], they mention a model
of competing networks that can be generalized for the hypergraph case: Imagine that
are 4 companies, denoted by letters 𝐴, 𝐺, 𝑀 , and 𝑆. The company 𝐴 sells 𝑂𝑆, 𝑆𝑃 ,
and 𝑁𝐵, 𝑀 sells 𝑂𝑆, 𝑆𝐸, and 𝑁𝐵, 𝐺 sells 𝑆𝑃 , 𝑆𝐸, and 𝑁𝐵, and 𝑆 sells 𝑆𝑃 and
𝑁𝐵. The natural question to be made is which company will sell more products? This
can be modeled using a hypergraph representation, where each product is a vertice, and
the hyperedges represent products that the company sells. In broad strokes, with some
other simplifications, this model describe the long term behavior of such companies.
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2 Stochastic Approximation Algorithm
A stochastic approximation algorithm is a discrete time stochastic process whose

general form can be written as
𝑥(𝑛 + 1) − 𝑥(𝑛) = 𝛾𝑛𝐻(𝑥(𝑛), 𝜉(𝑛)),

where 𝐻 is a measurable function that characterizes the algorithm, {𝑥(𝑛)}𝑛≥0 is the
sequence of parameters to be recursively updated, {𝜉(𝑛)}𝑛≥0 is a sequence of random
inputs where 𝐻(𝑥(𝑛), 𝜉(𝑛)) is observable, and {𝛾𝑛}𝑛≥0 is a sequence of small (in some
sense) nonnegative scalar gains.

The dynamical approach is a method to analyze stochastic approximation algo-
rithms. It says that the recursive expression can be related to the autonomous ODE

𝑑𝑥(𝑡)
𝑑𝑡

= 𝐻(𝑥(𝑡)),

where 𝐻(𝑥) = lim𝑛→∞E[𝐻(𝑥, 𝜉(𝑛))].
We will show that we can write the algorithm as

𝑥(𝑛 + 1) − 𝑥(𝑛) = 𝛾𝑛[𝐹 (𝑥(𝑛)) + 𝑢𝑛],

where 𝑢𝑛 is a random variable related to 𝜉(𝑛) with 0 expectancy. Thus, the ODE will
become

𝑑𝑥(𝑡)
𝑑𝑡

= 𝐹 (𝑥(𝑡)),

which is easier to analyze.
Let ℱ𝑛 be the 𝜎-algebra generated by the process until step 𝑛 and 𝐶𝑖(𝑛) be the num-

ber of balls added to vertex 𝑖 at step 𝑛. Consider the random variables 𝛿𝐼→𝑖(𝑛 + 1) ∈
{0, 1} for 𝑖 ∈ 𝐼 such that ∑𝑖∈𝐼 𝛿𝐼→𝑖(𝑛 + 1) = 1 and

𝔼[𝛿𝐼→𝑖(𝑛 + 1)|ℱ𝑛] =
𝑥𝑖(𝑛)
𝑥𝐼 (𝑛)

.

Assume that 𝛿𝐼1→𝑖1 (𝑛 + 1) and 𝛿𝐼2→𝑖2 (𝑛 + 1) are independent for every 𝐼1 ≠ 𝐼2. Then
𝐶𝑖(𝑛 + 1) =

∑

𝐼∈𝐸𝑖 𝛿𝐼→𝑖(𝑛 + 1). This way, we have that

𝑥𝑖(𝑛 + 1) − 𝑥𝑖(𝑛) =
𝐵𝑖(𝑛) + 𝐶𝑖(𝑛 + 1)
𝑁0 + (𝑛 + 1)𝑁

−
𝐵𝑖(𝑛)

𝑁0 + 𝑛𝑁

=
𝐵𝑖(𝑛)

𝑁0 + (𝑛 + 1)𝑁

(

1 −
𝑁0 + (𝑛 + 1)𝑁

𝑁0 + 𝑛𝑁

)

+
𝐶𝑖(𝑛 + 1)

𝑁0 + (𝑛 + 1)𝑁

= 1
𝑁0 + (𝑛 + 1)𝑁

(

−
𝐵𝑖(𝑛)𝑁
𝑁0 + 𝑛𝑁

)

+
𝐶𝑖(𝑛 + 1)

𝑁0 + (𝑛 + 1)𝑁

= 1
𝑁0
𝑁 + (𝑛 + 1)

(

−𝑥𝑖(𝑛) +
1
𝑁

𝐶𝑖(𝑛 + 1)
)

.
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If we write 𝛾𝑛 = 1
𝑁0
𝑁 +(𝑛+1)

and 𝜉𝑖(𝑛) = 1
𝑁𝐶𝑖(𝑛 + 1), then we can define 𝜉(𝑛) =

(𝜉1(𝑛),… , 𝜉𝑚(𝑛)) and we will have
𝑥(𝑛 + 1) − 𝑥(𝑛) = 𝛾𝑛(−𝑥(𝑛) + 𝜉(𝑛)).

Given a hyperedge 𝐼 ∈ 𝐸, let 𝑥𝐼 =
∑

𝑖∈𝐼 𝑥𝑖, and define 𝐸𝑖 = {𝐼 ∈ 𝐸 ∶ 𝑖 ∈ 𝐼}.
Consider the random variable 𝑢𝑛 = 𝜉(𝑛) − 𝔼[𝜉(𝑛)|ℱ𝑛] and notice that

𝔼[𝜉𝑖(𝑛)|ℱ𝑛] = 𝔼[ 1
𝑁

𝐶𝑖(𝑛 + 1)|ℱ𝑛]

= 1
𝑁

𝔼[𝐶𝑖(𝑛 + 1)|ℱ𝑛]

= 1
𝑁

𝔼

[

∑

𝐼∈𝐸𝑖

𝛿𝐼→𝑖(𝑛 + 1)|ℱ𝑛

]

= 1
𝑁

∑

𝐼∈𝐸𝑖

𝔼[𝛿𝐼→𝑖(𝑛 + 1)|ℱ𝑛]

= 1
𝑁

∑

𝐼∈𝐸𝑖

𝑥𝑖(𝑛)
𝑥𝐼 (𝑛)

.

Define the vector field 𝐹 ∶ Δ → ℝ𝑚, 𝐹 (𝑥(𝑛)) = (𝐹1(𝑥(𝑛)), 𝐹2((𝑛)𝑥),… , 𝐹𝑚((𝑛)𝑥)),
where 𝐹𝑖(𝑥(𝑛)) = −𝑥𝑖(𝑛) +

1
𝑁
∑

𝐼∈𝐸𝑖
1

𝑥𝐼 (𝑛)
. Now we can write

𝑥(𝑛 + 1) − 𝑥(𝑛) = 𝛾𝑛[𝐹 (𝑥(𝑛)) + 𝑢𝑛],
where 𝑢𝑛 is a random variable with conditional expectation 𝔼[𝑢𝑛|ℱ𝑛] = 0.

We will specify the domain Δ of 𝐹 . Fix 𝑐 < 1
𝑁

and let Δ ⊆ 𝑅𝑚 be the set of the
𝑚-tuples (𝑥1,… , 𝑥𝑚) that satisfy:

(i) 𝑥𝑖 ≥ 0 and ∑𝑚
𝑖=1 𝑥𝑖 = 1.

(ii) 𝑥𝐼 ≥ 𝑐 for all 𝐼 ∈ 𝐸.
We can show that Δ is positively invariant under the ODE 𝑑𝑣(𝑡)

𝑑𝑡 = 𝐹 (𝑣(𝑡)). Consider
𝐼 ∈ 𝐸 a hyperedge of 𝐻 ,

𝑑
𝑑𝑡

𝑣𝐼 =
∑

𝑖∈𝐼

(

−𝑣𝑖 +
1
𝑁

∑

𝐽∈𝐸𝑖

𝑣𝑖
𝑣𝐽

)

≥ −𝑣𝐼 +
1
𝑁

∑

𝑖∈𝐼

𝑣𝑖
𝑣𝐼

= −𝑣𝐼 +
1
𝑁

Now, if 𝑣 is a point on the boundary of Δ, then there must exist some 𝐼 ∈ 𝐸 such that
𝑣𝐼 = 𝑐. So

𝑑
𝑑𝑡

𝑣𝐼 = −𝑐 + 1
𝑁

> 0

and we may conclude that Δ is positively invariant under that ODE.
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Definition. Let 𝑈 ⊂ Δ be a closed set, and let 𝐹 ∶ 𝑈 → ℝ𝑚 be a continuous vector
field with unique integral curves, then:

i) A point 𝑥 ∈ 𝑈 is an equilibrium point if 𝐹 (𝑥) = 0. 𝑥 is called a stable equilibrium
if all eigenvalues of 𝐽𝐹 (𝑥) have negative real part, and an unstable equilibrium
point if one of the eigenvalues of 𝐽𝐹 (𝑥) have positive real part. We denote the set
of all equilibrium points by Λ and call it the equilibria set of 𝐹 .

ii) A strict Lyapunov function for F is a continuous map 𝐿 ∶ 𝑈 → ℝ which is strictly
monotone along any integral curve of 𝐹 outside of Λ. If 𝐹 has a strict Lyapunov
function, we call 𝐹 gradient-like.

Consider the function 𝐿 ∶ Δ → ℝ, which is given by

𝐿(𝑣1,… , 𝑣𝑚) = −
𝑚
∑

𝑖=1
𝑣𝑖 +

1
𝑁

∑

𝐼∈𝐸
log 𝑣𝐼

Lemma 2.1. 𝐿 is a strict Lyapunov function 𝐹 .

Proof. Calculating the derivative of 𝐿 with respect to 𝑣𝑖, we have
𝜕𝐿
𝜕𝑣𝑖

= −1 + 1
𝑁

∑

𝐼∈𝐸𝑖

1
𝑣𝐼

,

thus
𝑑𝑣𝑖
𝑑𝑡

= 𝐹𝑖(𝑣(𝑡)) = 𝑣𝑖

(

−1 + 1
𝑁

∑

𝐼∈𝐸𝑖

1
𝑣𝐼

)

= 𝑣𝑖
𝜕𝐿
𝜕𝑣𝑖

.

Now consider an integral curve of 𝐹 given by 𝑣 = (𝑣1(𝑡),… , 𝑣𝑚(𝑡)), 𝑡 ≥ 0, then
𝑑
𝑑𝑡

(𝐿◦𝑣) =
𝑚
∑

𝑖=1

𝜕𝐿
𝜕𝑣𝑖

𝑑𝑣𝑖
𝑑𝑡

=
𝑚
∑

𝑖=1
𝑣𝑖

(

𝜕𝐿
𝜕𝑣𝑖

)2
≥ 0.

Note that equality holds in the last expression if, and only if, 𝑣𝑖
(

𝜕𝐿
𝜕𝑣𝑖

)2
= 0 for every 𝑖 ∈

[𝑚] wich is equivalent to 𝐹 (𝑣) = 0. This proves that 𝐿 is a strict Lyapunov function for
𝐹 .

3 Limit set theorem
For our purposes, the results in [Ben96] can be summarized as follows.

Theorem 3.1. Let𝐹 ∶ R𝑚 → R𝑚 be a continuous gradient-like vector field with unique
integral curves, let Λ be its equilibria set, let 𝐿 be a strict Lyapunov function, and let
{𝑥(𝑛)}𝑛≥0 be a solution to the recursion

𝑥(𝑛 + 1) − 𝑥(𝑛) = 𝛾𝑛[𝐹 (𝑥(𝑛)) + 𝑢𝑛],

where 𝛾𝑛 is a decreasing sequence satisfying
∑

𝑛≥0 𝛾𝑛 = ∞, lim𝑛→∞ 𝛾𝑛 = 0 and {𝑢𝑛}𝑛≥0 ⊂
R𝑚. Assume that
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1. {𝑥𝑛}𝑛≥0 is bounded,

2. for each 𝑇 > 0,

lim
𝑛→∞

(

sup
{𝑘∶0≤𝜏𝑘−𝜏𝑛≤𝑇 }

‖

‖

‖

‖

‖

‖

𝑘−1
∑

𝑖=𝑛
𝛾𝑖𝑢𝑖

‖

‖

‖

‖

‖

‖

)

= 0,

where 𝜏𝑛 =
∑𝑛−1

𝑖=0 𝛾𝑖, and

3. 𝐿(Λ) ⊂ 𝑅 has empty interior.

Then the limit set of {𝑥𝑛}𝑛≥0 is a connected subset of Λ.

We will now check that our random process satisfies all 3 conditions. Clearly,
{𝑥𝑛}𝑛≥0 is bounded and 𝛾𝑛 is a decreasing sequence satisfying∑𝑛≥0 𝛾𝑛 = ∞, lim𝑛→∞ 𝛾𝑛 =
0. Let

𝑀𝑛 =
𝑛−1
∑

𝑖=0
𝑦𝑖𝑢𝑖

{𝑀𝑛}𝑛≥0 is a Martingale adapted to the filtration {ℱ𝑛}𝑛≥0:

E[𝑀𝑛+1|ℱ𝑛] =
𝑛−1
∑

𝑖=0
𝑦𝑖𝑢𝑖 + E[𝛾𝑛𝑢𝑛|ℱ𝑛] =

𝑛−1
∑

𝑖=0
𝑦𝑖𝑢𝑖 = 𝑀𝑛.

Furthermore, because for any 𝑛 ≥ 0

𝑛
∑

𝑖=0
E[‖𝑀𝑖+1 −𝑀𝑖‖

2
|ℱ𝑖] ≤

𝑛
∑

𝑖=0
𝛾2𝑖 ≤

∑

𝑖≥0
𝛾2𝑖 < ∞ a.s.,

the sequence {𝑀𝑛}𝑛≥0 converges almost surely to a finite random vector. In particular,
it is a Cauchy sequence and so condition 2 holds almost surely. It remains to check
condition 3.
For each 𝑆 ⊂ [𝑚], let

Δ𝑆 = {𝑣 ∈ Δ ∶ 𝑣𝑖 = 0 iff 𝑖 ∉ 𝑆}

denote the face of Δ determined by 𝑆. Δ𝑆 is a manifold with corners, positively invari-
ant under the ODE.
Definition. 𝑣 ∈ Δ𝑆 is an 𝑆−singularity for𝐿 if

𝜕𝐿
𝜕𝑣𝑖

(𝑣) = 0 for all 𝑖 ∈ 𝑆.

LetΛ𝑆 denote the set of𝑆−singularities for𝐿. It’s easy to show thatΛ =
⋃

𝑆⊂[𝑚] Λ𝑆and that 𝐿|Δ𝑆
is a 𝐶∞ function. Thus by Sard’s theorem 𝐿(Λ𝑆 ) has zero Lebesgue mea-

sure, so 𝐿(Λ) has zero Lebesgue measure as well. In particular, it has empty interior.
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4 Non-convergence to unstable equilibria
The following lemmas are proven for graph-based Pólya’s urns in [BBCL15] and

generalize with small changes to the hypergraph case. We give their full proofs for
completeness.
Lemma 4.1. Let 𝐻 be a finite, connected hypergraph and let 𝑣 ∈ Λ. The following are
equivalent:

1. 𝑣 is an unstable equilibrium.

2. There is 𝑖 ∈ [𝑚] such that 𝑣𝑖 = 0 and 𝜕𝐿
𝜕𝑣𝑖

(𝑣) > 0.

Proof. Consider the jacobian matrix 𝐽𝐹 (𝑣) =
(

𝜕𝐹𝑖
𝜕𝑣𝑗

(𝑣)
)

. A simple calculation gives
us

𝜕𝐹𝑖
𝜕𝑣𝑗

(𝑣) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑣𝑖
𝜕2𝐿

𝜕𝑣𝑖𝜕𝑣𝑗
(𝑣) if 𝐸𝑖 ∩ 𝐸𝑗 ≠ ∅ and 𝑖 ≠ 𝑗,

𝜕𝐿
𝜕𝑣𝑖

(𝑣) + 𝑣𝑖
𝜕2𝐿
𝜕𝑣2𝑖

(𝑣) if 𝑖 = 𝑗,

0 otherwise.
Without loss of generality, assume that 𝑣 ∈ Δ𝑆 with 𝑆 = {1,… , 𝑘} ⊆ [𝑚]. Thus

𝐽𝐹 (𝑣) =
[

𝐴 𝐶
0 𝐵

]

where 𝐵 = diag
(

𝜕𝐿
𝜕𝑣𝑘+1

(𝑣),… , 𝜕𝐿
𝜕𝑣𝑚

(𝑣)
)

. The spectrum of 𝐽𝐹 (𝑣) is then the union of
the spectra of 𝐴 and 𝐵.
Define the inner product (𝑥, 𝑦) = ∑𝑘

𝑖=1
𝑥𝑖𝑦𝑖
𝑣𝑖

. It’s easy to check that 𝐴 is self-adjoint with
respect to that inner product and (𝐴𝑥, 𝑦) = ⟨𝐷𝑥, 𝑦⟩, where 𝐷 is the Hessian matrix of
𝐿 restricted to the first 𝑘 coordinates. Thus, the eigenvalues of 𝐴 are all real and non-
positive (by the concavity of 𝐿). For that reason, 𝐽𝐹 (𝑣) has a real positive eigenvalue
if and only if 𝜕𝐿

𝜕𝑣𝑖
(𝑣) for some 𝑖 ∈ 𝑆 ⧵ [𝑚].

Lemma 4.2. Let 𝑣 ∈ Δ with 𝑣1 = 0 and 𝜕𝐿∕𝜕𝑣1(𝑣) > 3𝛿. Then there exists a neigh-
borhood  of 𝑣, an element 𝑢 ∈  and 𝜖0 > 0 such that

1. 𝜕𝐿∕𝜕𝑣1(𝑢) > 3𝛿 + |𝐸1
|𝜖0

𝑁

2. for all 𝑤 ∈  and 𝐼 ∈ 𝐸1 it holds

1
𝑤𝐼

> 1
𝑢𝐼

− 𝜖0

Proof. Fix 𝜖0 ∈
(

0,
(

𝜕𝐿
𝜕𝑣1

(𝑣) − 3𝛿
)

𝑁
|𝐸1

|

)

, so that 3𝛿 + |𝐸1
|𝜖0

𝑁
< 𝜕𝐿

𝜕𝑣1
(𝑣). Because

𝜕𝐿∕𝜕𝑣1 is continuous, we can fix a neighborhood  of 𝑣 satisfying condition 1.
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Each 𝑤 ∈  ↦ 1∕𝑤𝐼 , 𝐼 ∈ 𝐸1 is uniformly continuous, so there exists 𝛿 such that
|𝑤 − 𝑤̃| < 𝛿 ⟹

|

|

|

1
𝑤𝐼

− 1
𝑤̃𝐼

|

|

|

< 𝜖0 for all 𝑤, 𝑤̃ ∈  and 𝐼 ∈ 𝐸1. Thus, if we make
diam( ) < 𝛿 condition 2 is also satisfied.
Lemma 4.3. Let 𝐻 be a finite, connected hypergraph. Let 𝑣 ∈ Λ with 𝑣1 = 0. If
𝜕𝐿∕𝜕𝑣1(𝑣) > 0, then

P
[

lim
𝑛→∞

𝑥(𝑛) = 𝑣
]

= 0

Proof. We claim that
P
[

lim
𝑛→∞

𝐵1(𝑛) = ∞
]

= 1.

Fix some 𝐼 ∈ 𝐸1 and let 𝑍𝑛 be the event that 1 is chosen in 𝐼 at step 𝑛 + 1. Because
1 ≤ 𝐵𝑖(𝑛) ≤ 𝑁0 + 𝑛𝑁 for all 𝑖 ∈ [𝑚], it follows that

P
[

𝑍𝑛|𝑍
𝖼
𝑘,… , 𝑍𝖼

𝑛−1
]

≥ 1
|𝐼|(𝑁0 + 𝑛𝑁)

for every 𝐼 ∈ 𝐸1 and 𝑘 < 𝑛. The claim follows by an adaptation of the Borel-Cantelli
lemma.
Let 𝛿 > 0 and  as in Lemma 4.2 and fix 𝐵 > 0 large enough (to be specified later),
and define

𝑛 = {𝑥(𝑘) ∈  ,∀𝑘 ≥ 𝑛} ∩ {𝐵1(𝑛) > 𝐵}, 𝑛 > 0.

By the previous claim, {lim𝑗→∞ 𝑥(𝑗) = 𝑣} ⊂
⋃

𝑚≥𝑛 𝑚 for all 𝑛 > 0. Thus it is enough
to show that

P[𝑛] = 0 for sufficiently large 𝑛.

For a fixed 𝑛0, let 𝒢𝑛 = ℱ𝑛 ∩ 𝑛0 , and let 𝑐 > 0 such that
⎡

⎢

⎢

⎣

1 +
𝛿(1 + 2𝛿)
1 + 3

2𝛿

⎤

⎥

⎥

⎦

= 1 + 𝑐

We claim that if 𝐵 is large enough, then there is 𝑛0 > 0 such that

E[log 𝑥1((1 + 𝛿)𝑛)|𝒢𝑛] ≥ log 𝑥1(𝑛) +
1
2
log(1 + 𝑐) for all 𝑛 > 𝑛0.

Let 𝑡 ∈ {𝑛 + 1,… , (1 + 𝛿)𝑛}. Restricted to 𝑛0 , we have

P[1 is chosen in 𝐼 at step 𝑡] =
𝐵1(𝑡 − 1)
𝐵𝐼 (𝑡 − 1)

≥
𝐵1(𝑛)

𝑁0 + (𝑡 − 1)𝑁
1

𝑥𝐼 (𝑡 − 1)

≥
𝐵1(𝑛)

𝑁0 + (𝑡 − 1)𝑁

(

1
𝑢𝐼

− 𝜖0

)

.
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Define a family of independent Bernoulli random variables {𝐸𝑡,𝐼}, 𝑡 = 𝑛 + 1,… , (1 +
𝛿)𝑛, 𝐼 ∈ 𝐸1 such that

P[𝐸𝑡,𝐼 = 1] =
𝐵1(𝑛)

𝑁0 + (𝑡 − 1)𝑁

(

1
𝑢𝐼

− 𝜖0

)

.

Now couple {𝐸𝑡,𝐼} to our model as follows: if 𝐸𝑡,𝐼 = 1, then 1 is chosen in 𝐼 at step 𝑡.
Then

E

⎡

⎢

⎢

⎢

⎣

∑

𝑛+1≤𝑡≤(1+𝛿)𝑛
𝐼∈𝐸1

𝐸𝑡,𝐼

⎤

⎥

⎥

⎥

⎦

=
∑

𝐼∈𝐸1

((1+𝛿)𝑛
∑

𝑡=𝑛+1

𝐵1(𝑛)
𝑁0 + (𝑡 − 1)𝑁

(

1
𝑢𝐼

− 𝜖0

)

)

= 𝐵1(𝑛)

[

∑

𝐼∈𝐸1

(

1
𝑢𝐼

− 𝜖0

)

] (1+𝛿)𝑛
∑

𝑡=𝑛+1

(

1
𝑁0 + (𝑡 − 1)𝑁

)

≥ 𝐵1(𝑛)

[

1
𝑁

∑

𝐼∈𝐸1

(

1
𝑢𝐼

− 𝜖0

)

]

log
(

1 + 𝛿𝑛𝑁
𝑁0 + 𝑛𝑁

)

≥ 𝐵1(𝑛)(1 + 3𝛿) log
(

1 + 𝛿𝑛𝑁
𝑁0 + 𝑛𝑁

)

.

If 𝑛0 is large enough (such that 𝑛0𝑁
𝑁0+𝑛0𝑁

> 1
1+ 1

2 𝛿
), we get

E

⎡

⎢

⎢

⎢

⎣

∑

𝑛+1≤𝑡≤(1+𝛿)𝑛
𝐼∈𝐸1

𝐸𝑡,𝐼

⎤

⎥

⎥

⎥

⎦

≥ 𝐵1(𝑛)
𝛿(1 + 3𝛿)
1 + 3

2𝛿
.

By Chernoff bounds, if 𝜖1 > 0 then there is 𝐵0 large enough such that

P

⎡

⎢

⎢

⎢

⎣

∑

𝑛+1≤𝑡≤(1+𝛿)𝑛
𝐼∈𝐸1

𝐸𝑡,𝐼 > 𝐵1(𝑛)
𝛿(1 + 2𝛿)
1 + 3

2𝛿

⎤

⎥

⎥

⎥

⎦

> 1 − 𝜖1

for every 𝐵1(𝑛) > 𝐵0. Whenever the previous event holds, the coupling gives that
𝐵1((1 + 𝛿)𝑛) − 𝐵1(𝑛) ≥

∑

𝑛+1≤𝑡≤(1+𝛿)𝑛
𝐼∈𝐸1

𝐸𝑡,𝐼 > 𝐵1(𝑛)
𝛿(1 + 2𝛿)
1 + 3

2𝛿
, thus

𝑥1((1 + 𝛿)𝑛) > 𝑥1(𝑛)(1 + 𝑐).

Accordingly, P[𝑥1((1+𝛿)𝑛) > 𝑥1(𝑛)(1+ 𝑐)|𝒢𝑛] > 1− 𝜖1. Now, because 𝑥1((1+𝛿)𝑛) >
𝑥1(𝑛)
1+𝛿 and 𝜖1 can be taken arbitrarily small, we get

E[log 𝑥1((1 + 𝛿)𝑛)|𝒢𝑛] > (1 − 𝜖1) log(𝑥1(𝑛)(1 + 𝑐)) + 𝜖1 log
(

𝑥1(𝑛)
1 + 𝛿

)

> log 𝑥1(𝑛) +
1
2
log(1 + 𝑐),
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thus proving the claim. To conclude the proof of the lemma, we assume by contradiction
that P[𝑛] > 0 for some 𝑛 > 𝑛0. Define 𝑇𝑘 = (1 + 𝛿)𝑘𝑛 and 𝑋𝑘 = 𝑙𝑜𝑔𝑥1(𝑇𝑘). Then

E
[

𝑋𝑘+1|𝒢𝑛
]

= E
[

E
[

𝑋𝑘+1|𝒢𝑇𝑘

]

|𝒢𝑛

]

≥ E
[

𝑋𝑘|
]

+ 1
2
log(1 + 𝑐).

By induction,

E
[

𝑋𝑘|𝒢𝑛
]

≥ 𝑋0 +
𝑘
2
log(1 + 𝑐) ≥ − log(𝑁0 + 𝑛𝑁) + 𝑘

2
log(1 + 𝑐)

which is a contradiction, because the left hand side is bounded.
Now, let 𝑣 be an unstable equilibrium. We can assume 𝑣1 = 0 and 𝜕𝐿

𝜕𝑣1
(𝑣) > 0,

otherwise we just reorder the vertices of the hypergraph. Thus, by Lemma 4.3, almost
surely 𝑥(𝑛) does not converge to 𝑣.

5 Proof of Main Theorem
This section will be devoted to the proof of the main theorem of this report:

Main Theorem. Let 𝐻 be a finite and connected hypergraph.

(i) If 𝐼(𝐻)|Γ is injective, then there is a unique deterministic point 𝑣 = 𝑣(𝐻) such
that 𝑥(𝑛) converges to 𝑣 almost surely.

(ii) If 𝐼(𝐻)|Γ is not injective and 𝑥(𝑛) doesn’t converge to 𝜕Δ, then there is a closed
subset ofΔ, 𝒥 = 𝒥 (𝐻), such that 𝑥(𝑛) converges to a point of𝒥 almost surely.

The proof was separated into several lemmas and many of the ideas used here were
the same as in [CL14] and [Lim16] with some modifications and new insights.

Given 𝑤 ∈ Δ𝑆 , and 𝜒 ∈ (0,min𝑖∈𝑆 𝑤𝑖], let Δ𝑤,𝜒 = {𝑣 ∈ Δ ∶ 𝑣𝑖 ≥ 𝜒,∀𝑖 ∈ 𝑆}. By
Theorem 3.1 and Lemma 4.3, there is a non-unstable equilibrium 𝑤.
Lemma 5.1. Let 𝑤 be a non-unstable equilibrium. Then there’s a closed subset of Δ,
𝐽 = 𝐽 (𝑤, 𝜒), such that the orbit of 𝐹 |Δ𝑤,𝜒 converges to 𝐽 .

Proof. Let𝐻 ∶ Δ𝑤,𝜒 → ℝ be a Lyapunov function defined by𝐻(𝑣) =
∑

𝑖∈𝑆 𝑤𝑖 log(𝑣𝑖).Let 𝑐0 = ∑

𝑖∈𝑆 𝑤𝑖𝑙𝑜𝑔(𝑣𝑖(0)), and, since 𝐻(𝑣) ≤ 0, consider the set 𝐻−1[𝑐0, 0] = {𝑣 ∈
Δ𝑤,𝜒 ∶ 𝐻(𝑣) ≥ 𝑐0}. For 𝜒 > 0 small enough, 𝐻−1[𝑐0, 0] ⊂ Δ𝑤,𝜒 , and thus 𝐻 is
differentiable in Δ𝑤,𝜒 .

Taking the derivate of 𝐻 along the orbit of 𝑣
𝑑
𝑑𝑡

(𝐻◦𝑣) =
∑

𝑖∈𝑆
𝑤𝑖

1
𝑣𝑖

𝑑𝑣𝑖
𝑑𝑡

=
∑

𝑖∈𝑆
𝑤𝑖

𝜕𝐿
𝜕𝑣𝑖

=
𝑚
∑

𝑖=1
𝑤𝑖

𝜕𝐿
𝜕𝑣𝑖

= −1 + 1
𝑁

∑

𝐼∈𝐸

𝑤𝐼
𝑣𝐼

. (1)

Let 𝑓 ∶ Δ𝑤,𝜒 → ℝ as 𝑓 (𝑣) = −1 + 1
𝑁
∑

𝐼∈𝐸𝑖
𝑤𝐼
𝑣𝐼

. Note that 𝑓 (𝑤) = 0. We claim
that 𝑤 is a global minimum of 𝑓 . Hence, because 𝑥 > 0 → 1

𝑥 is convex, and 𝑓 is a
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sum of convex functions, 𝑓 is convex, and thus it is sufficient to show that 𝑤 is a local
minimum of 𝑓 .

Let 𝑣 = 𝑤 + 𝜖 ∈ Δ with 𝜖 = (𝜖1,… , 𝜖𝑚) and ‖𝜖‖ sufficiently small. Notice that as
𝑤 + 𝜖 ∈ Δ, then 𝜖 ∈ Γ =

{

𝑥 ∈ ℝ𝑚 ∶
∑𝑚

𝑖=0 𝑥𝑖 = 0
}, also if 𝑖 ∉ 𝑆, then 𝜖𝑖 ≥ 0, since

𝑣𝑖 = 𝑒𝑖 ≥ 0 for 𝑖 ∉ 𝑆. To prove our claim, we will use the following inequality
𝑥

𝑥 + 𝜖
− 1 ≥ − 𝜖

𝑥
,∀𝑥 > 0, 𝜖 > −𝑥,

that holds equality if, and only if, 𝜖 = 0. Applying the inequality,

𝑓 (𝑣) − 𝑓 (𝑤) = −1 + 1
𝑁

∑

𝐼∈𝐸

𝑤𝐼
𝑣𝐼

= 1
𝑁

∑

𝐼∈𝐸

(

𝑤𝐼
𝑤𝐼 + 𝜖𝐼

− 1
)

≥ 1
𝑁

∑

𝐼∈𝐸
−
𝜖𝐼
𝑤𝐼

= −
𝑚
∑

𝑖=0
𝜖𝑖

(

1
𝑁

∑

𝐼∈𝐸𝑖

1
𝑤𝐼

)

= −
𝑚
∑

𝑖=0
𝜖𝑖

(

1 + 𝜕𝐿
𝜕𝑣𝑖

(𝑤)
)

= −
𝑚
∑

𝑖=0
𝜖𝑖
𝜕𝐿
𝜕𝑣𝑖

(𝑤)

= −
∑

𝑖∈𝑆
𝜖𝑖
𝜕𝐿
𝜕𝑣𝑖

(𝑤) −
∑

𝑖∉𝑆
𝜖𝑖
𝜕𝐿
𝜕𝑣𝑖

(𝑤)

≥ 0

since 𝜖𝑖
𝜕𝐿
𝜕𝑣𝑖

= 0 for 𝑖 ∈ 𝑆, and 𝜖𝑖
𝜕𝐿
𝜕𝑣𝑖

≤ 0 for 𝑖 ∉ 𝑆. By the inequality, the equality
holds if, and only if, 𝜖𝐼 = 0 for all 𝐼 ∈ 𝐸. This system is equivalent to 𝐼(𝐻)𝜖 = 0 for
𝜖 ∈ Γ =

{

𝑥 ∈ ℝ𝑚 ∶
∑𝑚

𝑖=1 𝑥𝑖 = 0
}. We consider the set

𝐽 (𝑤, 𝜒) =
{

𝑣 ∈ Δ𝑤,𝜒 ∶ 𝐼(𝐻)(𝑣 −𝑤) = 0
}

. (2)
Notice that 𝐽 is a closed set, since it’s the pre-image of a closed set by a continuous
function, and 𝑓 |𝐽 ≡ 0.

If 𝐼(𝐻)|Γ is injective, by (2), 𝐽 (𝑤, 𝜒) must be a unique point. Let 𝑣 ∈ 𝑖𝑛𝑡(Δ). For
𝜒 small enough, 𝑣 ∈ Δ𝑤,𝜒 , and the orbit of 𝐹 |Δ𝑤,𝜒 converges to 𝑤, which concludes
the proof of part (a).

Now we prove part (b). If 𝐼(𝐻)|Γ is not injective, let 𝒥 = 𝒥 (𝑤) be the maximal
extension of 𝐽 (𝑤, 𝜒) on Δ. We have that 𝒥 has the following properties:

• It is an affine space 𝑤 + ker(𝐼(𝐻)) restricted to Δ.
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• 𝜕𝐿
𝜕𝑣𝑖

|

|

|𝒥
is constant and equal to 𝜕𝐿

𝜕𝑣𝑖
(𝑤) for all 𝑖.

In fact, it doesn’t depend on the choice of 𝑤.
Lemma 5.2. The space 𝒥 is the set of all non-unstable equilibria.

Proof. Let 𝑤 and 𝑤̃ be two non-unstable equilibria. There is a 𝜒 > 0 sufficiently small
such that Δ𝑤,𝜒 ∩ Δ𝑤̃,𝜒 ≠ ∅. Every orbit of 𝐹 starting from Δ𝑤,𝜒 ∩ Δ𝑤̃,𝜒 converges to
both𝒥 (𝑤) and𝒥 (𝑤̃), so𝒥 (𝑤)∩𝒥 (𝑤̃) ≠ ∅. Since it’s a translation of the same subspace
that intersects in a point, it must be the same space. Thus 𝒥 = 𝒥 (𝑤) = 𝒥 (𝑤̃).

Let𝑤 ∈ Δ be a non-unstable equilibria. By the properties of𝒥 , 𝜕𝐿
𝜕𝑣𝑖

|𝒥 = 𝜕𝐿
𝜕𝑣𝑖

(𝑤) ≤ 0
for all 𝑖. By Lemma 4.1, 𝒥 is the set of all non-unstable equilibria.

Let 𝑖𝑛𝑡(𝒥 ) denote the interior of 𝒥 by viewing it as immersed in the euclidean space
of dimension dim(ker(𝐼(𝐻)). If 𝑥(𝑛) doesn’t converge to 𝜕Δ, then, by Theorem 3.1
and Lemma 4.3, we have that Λ[𝑚] ≠ ∅. This guarantees that 𝑖𝑛𝑡(𝒥 ) ⊂ 𝑖𝑛𝑡(Δ), since
Λ[𝑚] ⊂ 𝒥 and 𝒥 is not fully contained in a face of Δ.
Lemma 5.3. Suppose that Λ[𝑚] ≠ ∅ and let 𝑤 ∈ 𝑖𝑛𝑡(𝒥 ), then all eigenvalues of 𝐷𝐹 (𝑤)
are real, and any eigenvalues in a transverse direction to 𝒥 is negative.

Proof. Since𝑤 is a non-unstable equilibrium, all eigenvalues of𝐷𝐹 (𝑤) are non-positive,
and it’s sufficient to show that ker(𝐷𝐹 (𝑤)) = ker(𝐼(𝐻)).

Let 𝑣 ∈ ker(𝐼(𝐻))|Γ. As 𝑤 ∈ 𝑖𝑛𝑡(𝒥 ), 𝑤 + 𝑡𝑣 is also a non-unstable equilibrium.
By the Taylor expansion of 𝐹 at 𝑤 + 𝑡𝑣:

𝐹 (𝑤 + 𝑡𝑣) = 𝐹 (𝑤) +𝐷𝐹 (𝑤)(𝑡𝑣) + 𝑅(𝑡)

𝐷𝐹 (𝑤)𝑣 = −
𝑅(𝑡)
𝑡

←←←←←←←←←←←←←←←←→
𝑡→0

0

𝐷𝐹 (𝑤)𝑣 = 0

Thus 𝑣 ∈ ker(𝐷𝐹 (𝑤)), and ker(𝐼(𝐻)|Γ) ⊂ ker(𝐷𝐹 (𝑤)).
By Lemma 4.1, for 𝑤 ∈ Λ[𝑚], 𝐷𝐹 (𝑤) ∶ 𝑇𝑤Δ → 𝑇𝑤Δ is equal to the matrix

𝐶 =
(

𝑣𝑖
𝜕𝐿

𝜕𝑣𝑖𝜕𝑣𝑗

)

restricted to 𝑇𝑤Δ. Let 𝐴 =
(

𝜕𝐿
𝜕𝑣𝑖𝜕𝑣𝑗

)

be Hessian matrix of 𝐿 at
coordinates 𝑣1,… , 𝑣𝑚. Since the rows of 𝐶 are nonzero multiples of the rows of 𝐴,
rank(𝐶) = rank(𝐴).

Let 𝐵 be the incidence matrix of 𝐻 with each row multiplied by 1
𝑤𝐼

, where 𝐼 is the
hyperedge that denotes said row. Notice that rank(𝐼(𝐻)) = rank(𝐵). We claim that
− 1

𝑁𝐵𝑇𝐵 = 𝐴. In fact, the 𝑖th-row of 𝐵𝑇 is
(

𝛿𝐼1 (𝑖)
1
𝑣𝐼1

,… , 𝛿𝐼𝑁 (𝑖)
1

𝑣𝐼𝑁

)

, where 𝛿𝐼𝑘 (𝑖) =

0 if 𝑖 ∈ 𝐼𝑘, and 0, otherwise. And 𝑗th-column of 𝐵 is
(

𝛿𝐼1 (𝑗)
1
𝑣𝐼1

,… , 𝛿𝐼𝑁 (𝑗)
1

𝑣𝐼𝑁

)

.
Multiplying the 𝑖th-row of 𝐵𝑇 with the 𝑗th-column of 𝐵 is equal to

∑

𝐼∈𝐸𝑖∩𝐸𝑗

1
(𝑣𝐼 )2

.
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Calculating 𝜕𝐿
𝜕𝑣𝑖𝜕𝑣𝑗

, we obtain

− 1
𝑁

∑

𝐼∈𝐸𝑖∩𝐸𝑗

1
(𝑣𝐼 )2

,

which proves our claim. Hence rank(𝐵𝑇𝐵) = rank(𝐴).
As rank(𝐵𝑇𝐵) = rank(𝐵), we have that rank(𝐼(𝐻)|Γ) = rank(𝐴), which implies

that rank(𝐼(𝐻)|Γ) = rank(𝐶) = rank(𝐷𝐹 (𝑤)). Since ker(𝐼(𝐻)|Γ) ⊂ ker(𝐷𝐹 (𝑤)),
ker(𝐷𝐹 (𝑤)) = ker(𝐼(𝐻)|Γ).

Let 𝑥(𝑡) denote the interpolated processes of 𝑥(𝑛):

𝑥(𝑡) =
∑

𝑛≥0

(

𝑥(𝑛) +
𝑡 − 𝜏𝑛
𝛾𝑛

(𝑥(𝑛 + 1) − 𝑥(𝑛))
)

1|[𝜏𝑛,𝜏𝑛+1)(𝑡)

where 𝜏𝑛 =
∑𝑛−1

𝑘=0 𝛾𝑘. If we prove the convergence 𝑥(𝑡), then the convergence of
𝑥(𝑛) follows immediately.

The following lemma tells us how well we can approximate the interpolation process
by the semiflow {Φ𝑡}𝑡≥0 induced by F.
Lemma 5.4. [Ben99, Proposition 8.3] Almost surely,

sup
𝑇>0

lim sup
𝑡→∞

1
𝑡
log

(

sup
0≤ℎ≤𝑇

𝑑(𝑥(𝑡 + ℎ),Φℎ(𝑥(𝑡)))
)

≤ −1∕2.

This lemma gives a quantitative estimation of how well the interpolated process can
be approximated by the semi-flow Φ of 𝐹 . In the original proposition, the right hand of
the inequality is equal to 1

2 lim𝑛→∞
log(𝛾𝑛)
𝜏𝑛

. But, as 𝛾𝑛 is 𝑂(1∕𝑛), 1
2 lim𝑛→∞

log(𝛾𝑛)
𝜏𝑛

= − 1
2 .

Fix a subset 𝐼 ⊂ 𝑖𝑛𝑡(𝒥 ), and a small neighborhood 𝑈 of 𝐼 in Δ, there is a foliation
of submanifolds {ℱ𝑥}𝑥∈𝑈 such that:

• ℱ𝑥 ⋔ 𝒥 is one point denoted by 𝜋(𝑥).
• For each 𝑥, the flow on ℱ𝑥 exponentially contracts to 𝜋(𝑥).
This is an application of the theory of invariant manifolds for normally hyperbolic

sets (see [HPS77, Theorem 4.1]).
That submanifold induces a map 𝜋 ∶ 𝑈 → 𝒥 . Notice that 𝜋 is not a projection

(it is not even linear), but ℱ𝑥 depends smoothly on 𝑥. Hence if 𝑈 is small, then 𝜋 is
2-Lipschitz:

𝑑(𝜋(𝑥), 𝜋(𝑦)) ≤ 2𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑈. (3)
Let fix a 𝜖 > 0 and reduce 𝑈 , if necessary, so that

𝑈 = {𝑥 ∈ Δ ∶ 𝜋 ∈ 𝐼 and 𝑑(𝑥, 𝜋(𝑥)) < 𝜖}, (4)
Let 𝑐 = max{𝜆 ∶ 𝜆 ≠ is a eigenvalue of 𝐷𝐹 (𝑤), 𝑥 ∈ 𝐼}. By Lemma 5.3, 𝑐 < 0.

Thus there is a 𝐾 > 0 such that
𝑑(Φ𝑡(𝑥), 𝜋(𝑥)) ≤ 𝐾𝑒𝑐𝑡𝑑(𝑥, 𝜋(𝑥)),∀𝑥 ∈ 𝑈,∀𝑡 ≥ 0. (5)
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By hypothesis, 𝑥(𝑛) doesn’t converge to 𝜕Δ, and since 𝑖𝑛𝑡(𝒥 ) ∩ 𝑖𝑛𝑡(Δ) = 𝑖𝑛𝑡(𝒥 ),
by Lemma 5.1, it must have an accumulation point in the 𝑖𝑛𝑡(𝒥 ). Let 𝐼 ⊂ 𝑖𝑛𝑡(𝒥 ) be a
subset that contains this point and 𝑈 as in (4)
Lemma 5.5. [CL14, Lemma 4.4] Let 𝑥(𝑡) ∈ 𝑈 . If 𝑡, 𝑇 are large enough, then

(i) 𝑑(𝜋(𝑥(𝑡 + 𝑇 )), 𝜋(𝑥(𝑡))) ≤ 2𝑒−
𝑡
4

(ii) 𝑥(𝑡 + 𝑇 ) ∈ 𝑈

Proof. To simplify, denote 𝑥(𝑡) by 𝑥 and 𝑥(𝑡 + 𝑇 ) by 𝑥(𝑇 ).
(i) Since 𝜋(Φ𝑇 (𝑥)) = 𝜋(𝑥) and 𝜋 is 2-Lipschitz:

𝑑(𝜋(𝑥(𝑇 )), 𝜋(𝑥)) = 𝑑(𝜋(𝑥(𝑇 )), 𝜋(Φ𝑇 (𝑥))) ≤ 2𝑑(𝑥(𝑇 ),Φ𝑇 (𝑥))

By Lemma 5.4, 𝑑(𝑥(𝑇 ),Φ𝑇 (𝑥)) ≤ 𝑒−
𝑡
4 for large t, so 𝑑(𝜋(𝑥(𝑇 )), 𝜋(𝑥)) ≤ 2𝑒−

𝑡
4 .

(ii) By triangular inequality,
𝑑(𝑥(𝑇 ), 𝜋(𝑥(𝑇 ))) ≤ 𝑑(𝑥(𝑇 ),Φ𝑇 (𝑥)) + 𝑑(Φ𝑇 (𝑥), 𝜋(Φ𝑇 (𝑥)))+

𝑑(𝜋(Φ𝑇 (𝑥)), 𝜋(𝑥(𝑇 )))
≤ 3𝑑(𝑥(𝑇 ),Φ𝑇 (𝑥)) + 𝑑(Φ𝑇 (𝑥), 𝜋(𝑥))

≤ 3𝑒−
𝑡
4 +𝐾𝑒𝑐𝑇 𝑑(𝑥, 𝜋(𝑥))

≤ 3𝑒−
𝑡
4 +𝐾𝑒𝑐𝑇 𝜖

< 𝜖

whenever 3𝑒− 𝑡
4 < 𝜖

2 and 𝐾𝑒𝑐𝑇 < 1
2 .

This second part of the lemma allows us to apply it inductively to the points 𝑥𝑘 ∶=
𝑥(𝑡+𝑘𝑇 ), 𝑘 ≥ 0. If 𝑥𝑘 ∈ 𝑈 , by the Lemma 5.5, then 𝑥𝑘+1 ∈ 𝑈 and 𝑑(𝜋(𝑥𝑘+1), 𝜋(𝑥𝑘)) <
2𝑒−

𝑡+𝑘𝑇
4 . For this, we can choose 𝑡 and 𝑇 large enough so that 2∑𝑘 𝑒

− 𝑡+𝑘𝑇
4 can be

arbitrary small impliying that 𝜋(𝑥𝑘) ∈ 𝐼,∀𝑘 ≥ 0. Thus 𝜋(𝑥𝑘) converges. Let 𝑥̃ be the
limit of 𝜋(𝑥𝑘).Notice that in the proof of Lemma 5.5(ii), the following inequality holds for all
𝑘 ≥ 0:

𝑑(𝑥𝑘, 𝜋(𝑥𝑘) ≤ 3𝑒−
𝑡+(𝑘−1)𝑇

4 +𝐾𝑒𝑐𝑇 𝑑(𝑥𝑘−1, 𝜋(𝑥𝑘−1)) (6)
Let 𝜆 = 𝐾𝑒𝑐𝑇 , thus:
𝑑(𝑥𝑘, 𝜋(𝑥𝑘)) ≤ 3𝑒−

𝑡
4

(

𝑒−
(𝑘−1)𝑇

4 + 𝜆𝑒−
(𝑘−2)𝑇

4 +⋯ + 𝜆𝑘−1
)

+ 𝜆𝑘𝑑(𝑥0, 𝜋(𝑥0))

≤ 3𝑒−
𝑡
4 𝑘

(

max
{

𝑒−
𝑇
4 , 𝜆

})𝑘−1
+ 𝜆𝑘𝑑(𝑥0, 𝜋(𝑥0)).

For 𝑇 large enough, max
{

𝑒−
𝑇
4 , 𝜆

}

< 1, hence lim 𝑑(𝑥𝑘, 𝜋(𝑥𝑘)) = 0. By triangular
inequality, 𝑑(𝑥𝑘, 𝑥̃) ≤ 𝑑(𝑥𝑘, 𝜋(𝑥𝑘)) + 𝑑(𝜋(𝑥𝑘), 𝑥̃), and taking the limit on both sides,
lim 𝑑(𝑥𝑘, 𝑥̃) = 0. Thus lim 𝑥𝑘 = 𝑥̃.

14



Now let 𝑠 ∈ [𝑡 + 𝑘𝑇 , 𝑡 + (𝑘 + 1)𝑇 ], by the triangular inequality and Lemma 5.4:
𝑑(𝑥(𝑠), 𝑥̃) = 𝑑(𝑥(𝑠),Φ𝑠−(𝑡+𝑘𝑇 )(𝑥̃))

≤ 𝑑(𝑥(𝑠),Φ𝑠−(𝑡+𝑘𝑇 )(𝑥𝑘)) + 𝑑(Φ𝑠−(𝑡+𝑘𝑇 )0(𝑥𝑘),Φ𝑠−(𝑡+𝑘𝑇 )(𝑥̃))

≤ 𝑒−
𝑡+𝑘𝑇
4 + 𝑐(𝑇 )𝑑(𝑥𝑘, 𝑥̃),

where 𝑐(𝑇 ) > 0 is the supremum of the Lipchitz constants of Φ𝛿 , 𝛿 ∈ [0, 𝑇 ]. Therefore
𝑥(𝑡) converges to 𝑥̃, and this concludes the proof of part (b) and of the theorem.

6 Some examples
6.1 Platonic solids

We can view the platonic solids as hypergraphs where the faces of the solids are the
hyperedges. For example:

4

3

2

1

In this case, we consider a tetrahedron with vertices 𝑉 = {1, 2, 3, 4} and hyperedges
𝐸 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.
Considering the other platonic solids, we have the following table:

Hypergraph H dim ker 𝐼(𝐻) dim ker 𝐼(𝐻)|Γ
Tetrahedron 0 0

Cube 4 ≥ 3
Octahedron 2 ≥ 1
Icosahedron 0 0

Dodecahedron 8 ≥ 7

The uniform measure is always a non-unstable equilibrium for a uniform and regular
hypergraph. In particular, it is the only non-unstable equilibrium for the tetrahedron and
the icosahedron.

6.2 Translated properties of Graphs to Hypergraphs
According to the Corollary 1.3 of [BBCL15], a finite, connected, regular, non-

bipartite graph has a finite equilibria set, so it is natural to ask if the equilibria set of a
finite, connected, regular, k-uniform, non-k-partite hypergraph is also finite
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Example 1. Consider the hypergraph with the following incidence matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 1 1 0 1
1 0 1 1 0 0 1 0
1 0 1 0 0 1 1 0
0 1 0 1 1 0 0 1
1 1 0 0 1 0 1 0
0 0 1 1 0 1 0 1
0 1 1 0 1 1 0 0
1 0 0 1 0 0 1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

This matrix represents a 4-uniform, 4-regular, non-4-partite hypergraph. Its rank is
equal to 5, therefore Λ is a 2-dimensional subset of the 6-dimensional simplex, which
is an infinite equilibria set. In other words, this result can’t be generalized for hyper-
graphs.

There are also examples of a k-uniform, regular, k-partite hypergraph, and a k-
uniform, non-regular, non-k-partite hypergraph that has infinite equilibria sets.

6.3 Hypergraphs with tight-cycles
Definition. If there are vertices 𝑣1,… , 𝑣𝑘 and hyperedges 𝐸𝑖 = {𝑣𝑖,… , 𝑣𝑖+𝑙−1} (con-
sidering the indices modulo 𝑘), with 𝑖 ∈ [𝑘], then a pair (𝑉 𝑘, 𝐸𝑘), 𝑉 𝑘 = {𝑣1,… , 𝑣𝑘}
and 𝐸𝑘 = {𝐸1,… , 𝐸𝑘}, is a (𝑘, 𝑙)-tight-cycle, 𝑘 ≥ 𝑙.

Theorem 6.1. Let𝐻 be a hypergraph with𝑚 vertices. If𝐻 contains a (𝑚, 𝑙)-tight-cycle
and gcd(𝑚, 𝑙) = 𝑑, then dim ker(𝐼(𝐻)) ≤ 𝑑 − 1.

Proof. For this proof, we will consider the indices modulo 𝑚. From 𝐼(𝐻) ⋅ 𝑥 = 0, the
rows of 𝐼(𝐻) corresponding to the hyperedges of the tight-cycle give us ∑𝑗+𝑙−1

𝑖=𝑗 𝑥𝑖 = 0,
𝑗 ∈ {1,…𝑚}. We get 𝑥𝑖 = 𝑥𝑖+𝑙 for every 𝑖 ∈ [𝑘]. Thus, if 𝑖 ≡ 𝑗 (mod 𝑙), then 𝑥𝑖 = 𝑥𝑗 .If 𝑖 ≡ 𝑗 (mod 𝑑), there exists an integer 𝑘 such that 𝑗 = 𝑖 + 𝑘𝑑. By Bezout’s
Theorem, there exist integers 𝑝, 𝑞 satisfying 𝑝𝑚+𝑞𝑙 = 𝑘𝑑, so 𝑗 = 𝑖+𝑝𝑚+𝑞𝑙. Therefore,
if 𝑖 ≡ 𝑗 (mod 𝑑), then 𝑥𝑗 = 𝑥𝑖+𝑝𝑚+𝑞𝑙 = 𝑥𝑖+𝑞𝑙 = 𝑥𝑖.Writing 𝑚 = 𝑚′𝑑, we define 𝐵𝑖 = {𝑖, 𝑖 + 𝑑,… , 𝑖 + (𝑚′ − 1)𝑑}, such that
[𝑚] =

⋃𝑑
𝑖=1 𝐵𝑖 is a partition. So, if 𝑗 ∈ 𝐵𝑖, then 𝑥𝑗 = 𝑥𝑎 for all 𝑎 ∈ 𝐵𝑖. Thus,

the equation 𝑥𝑖+…+𝑥𝑖+𝑙−1 = 0 is simplified to 𝑙
𝑑 (𝑥𝑖+…+𝑥𝑖+𝑑−1) = 0. In particular,

𝑥1 +…+ 𝑥𝑑 = 0. Therefore, dim(ker(𝐼(𝐻))) ≤ 𝑑 − 1.

Corollary 1. Let 𝐻 be a hypergraph with 𝑚 vertices. If 𝐻 contains a (𝑚, 𝑙)-tight-cycle
and gcd(𝑚, 𝑙) = 1, then 𝐼(𝐻) is injective.

Example 2. Let G and H be hypergraphs given by a pyramid with a 3-polygonal and
4-polygonal base, respectively. The incidence matrices are
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𝐼(𝐺) =

⎡

⎢

⎢

⎢

⎣

1 1 1 0
1 0 1 1
1 1 0 1
0 1 1 1

⎤

⎥

⎥

⎥

⎦

, 𝐼(𝐻) =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 0 0
1 0 1 1 0
1 0 0 1 1
1 1 0 0 1
0 1 1 1 1

⎤

⎥

⎥

⎥

⎥

⎦

.

Given the systems 𝐼(𝐺) ⋅ 𝑥 = 0 and 𝐼(𝐻) ⋅ 𝑥 = 0, the last line concludes that 𝑥1 = 0,
and the case reduces to the (3, 2)-tight-cycle and (4, 2)-tight-cycle, respectively. We can
generalize this to hypergraphs with 𝑛 vertices and a (𝑛 − 1, 𝑙)-tight-cycle.

7 Degree and boundary
Let 𝑤 ∈ Λ be a non-unstable equilibrium point and denote by 𝑑𝑖 the degree of the

vertex 𝑖. We may ask if there is any relation between a vertex degree and its coordinate
in 𝑤. A simple and natural way to try to relate the degrees with the proportions is

𝑑𝑖 > 𝑑𝑗 ⟹ 𝑤𝑖 ≥ 𝑤𝑗 , ∀𝑖,𝑗 ∈ 𝑉 .
If it were true, it would be saying that the urns that compete for more balls will have a
bigger proportion of balls at the limit. To approach this question, we will consider the
case where we have a vertex that belongs to only one edge. In graph theory, this kind
of vertex is called a leaf.
Proposition 1. Let 𝐻 = (𝑉 ,𝐸) be a connected and finite hypergraph with 𝑉 =
[𝑚] and |𝐸| = 𝑁 . Assume that the vertex 𝑖 ∈ 𝑉 is a leaf. If 𝑤 = (𝑤1, 𝑤2,… , 𝑤𝑚) is
an equilibrium point of 𝐹 with 𝑤𝑖 > 0, then 𝑤 is unstable.

Proof. Since 𝑤 is an equilibrium point, we have that 𝐹 (𝑤) = 𝑤𝑖
𝜕𝐿
𝜕𝑣𝑖

(𝑤) = 0. By
hypothesis 𝑤𝑖 > 0, so we must have 𝜕𝐿

𝜕𝑣𝑖
(𝑤) = 0. Note that

𝜕𝐿
𝜕𝑣𝑖

(𝑤) = −1 + 1
𝑁𝑤𝐼0

⇒ 𝑤𝐼0 =
1
𝑁

,

where 𝐼0 is the only hyperedge that contains 𝑖. Thus, for every 𝑗 adjacent to 𝑖, we have

𝜕𝐿
𝜕𝑣𝑗

(𝑤) = −1 + 1
𝑁

⎛

⎜

⎜

⎜

⎝

1
𝑤𝐼0

+
∑

𝐼∈𝐸𝑗

𝐼≠𝐼0

1
𝑤𝐼

⎞

⎟

⎟

⎟

⎠

= 1
𝑁

∑

𝐼∈𝐸𝑗

𝐼≠𝐼0

1
𝑤𝐼

For the domain of 𝐹 , we know that 𝑤𝐼 > 0, ∀𝐼 ∈ 𝐸𝑗 , 𝐼 ≠ 𝐼0. Then, we must have
𝑤𝑗 = 0, otherwise, 𝑤 wouldn’t be an equilibrium point. By Lemma 7.1, we conclude
that 𝑤 is unstable.

Now we will give an example of a graph, which is simply a 2-uniform hypergraph,
where the answer to the question is negative.
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Figure 1: Graph 𝐺. There is an equilibrium point 𝑣 in which 𝑣1 > 𝑣2.

Example 3. Consider the graph 𝐺 represented in figure 1. In 𝐺, we have 𝑑1 = 3 <
4 = 𝑑2 and a stable equilibrium point 𝑣 where

𝑣1 =
26
135

+
2
√

34
135

> 4
135

+
11

√

17
2

135
= 𝑣2.

Note that vertices 5, 6, and 7, which are adjacent to 2, are also adjacent to a leaf each.
By Proposition 2, the proportion of balls in the leaves has a limit equal to zero. Then,
there is a moment where the vertices adjacent to these leaves start to get almost every
ball from them. Because of it, we may call the leaves "weak" vertices and call the
vertices 5, 6, and 7 "strong" vertices. This way, we may understand the example by
noticing that 1 is adjacent to 2 and the other two "weak" vertices, while 2 is adjacent
to 1 and the other three "strong" vertices.

In the previous example, we see that 2 is "weaker" than 1 and, in that case, it’s
happening because 2 is two vertices away from the boundary of the graph while 1 is
only one vertex away from the boundary of the graph. We can also see an example
where a vertex is further away from the boundary than some other vertex, but it is still
"stronger" than the other one.
Example 4. In graph 𝐺1 of figure 2, we have a stable equilibrium point 𝑤 where the
leaves are "weak"(𝑤𝑖 = 0, for every 𝑖 that is a a leaf), the vertices 2, 3, 4 and 5 are
"strong" (𝑤2 = ⋯ = 𝑤5 = 1∕4) and the vertex 1 is also "weak"(𝑤1 = 0). But if we look
at 𝐺2, we have a stable equilibrium point 𝑤′ where the leaves are "weak"(𝑤𝑖 = 0, for
every 𝑖 that is a leaf), the vertices 6, 7,… , 17 are "strong"(𝑤6 = ⋯ = 𝑤17 = 1∕13),
the vertices 2, 3, 4𝑎𝑛𝑑5 are "weak"(𝑤2 = ⋯ = 𝑤5 = 0) and the vertex 1 is also
"strong"(𝑤1 = 1∕13) even being further away from the boundary than 2, 3, 4 and 5.

8 Completion of Incidence Matrix by Wavelets
Given 𝛽, the base of ℝ𝑛, formed by vectors of 0’s and 1’s such that each vector

has at least two components different from zero, and an incidence matrix 𝐼(𝐻) of a
hypergraph 𝐻 , it is possible to insert vectors of 𝛽 in 𝐼(𝐻) in such a way the rank of
the matrix be equal the vertices number. In the case that rank of 𝐼(𝐻) is equal to the
vertices number, it is known there is a unique deterministic point 𝑣 = 𝑣(𝐻) that 𝑥(𝑛)
converges to 𝑣 almost surely. Otherwise, can not conclude the same results.
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Figure 2: We have graph 𝐺1 on the left and graph 𝐺2 on the right.

Thus, using the Completion of Incidence Matrix Method, the objective is to modify
𝐻 , in such a way the new rank of 𝐼(𝐻) is equal to the vertices number and conclude
the new Pólya’s Urn problem has a unique deterministic solution.
Definition. A wavelets matrix of order 𝑛, denoted by 𝕎(𝑛), is given by

{

𝑎𝑖𝑗 = 1, if 𝑗 − 1 ≡ 0 (mod 𝑖)
𝑎𝑖𝑗 = 0, otherwise

.

Proposition 2. The vector os 𝕎(𝑖) form a basis of ℝ𝑖 for 𝑖 ∈ {1, 2, 3}.

Proposition 3. The vectors of 𝕎(𝑛) form a basis of ℝ𝑛.

Proof. It is enough to show that ker(𝕎(𝑛)) = {0}. Considering the system𝕎(𝑛)⋅𝑥 = 0,
from the last row we get 𝑥1 = 0. Now, if 𝑖 > 𝑛 − 1

2
, then row 𝑖 of the system is

𝑥1 + 𝑥𝑖+1 = 0 implying 𝑥𝑖+1 = 0. So, we can reduce 𝕎(𝑛) to the case 𝕎(𝑛′), such that
𝑛′ = min

{

𝑖 ||
|

𝑖 > 𝑛 − 1
2

}

.
We can repeat the process up to 𝕎(𝑖), 𝑖 ∈ {1, 2, 3}, and by Proposition 2, the vectors

of 𝕎(𝑛) form a basis of ℝ𝑛.
In consequence of previous results, we can complete the incidence matrix 𝐼(𝐻) of a

hypergraph 𝐻 with wavelets vectors to form a basis of ℝ𝑛. It concludes the Completion
of Incidence Matrix by Wavelets Method.

9 Futher questions
It’s not clear the behavior when 𝑥(𝑛) converges to 𝜕Δ, because we can’t guarantee

that ker(𝐼(𝐻))|𝑇𝑤Δ = ker(𝐷𝐹 (𝑤)) as in Lemma 5.3, when 𝑤 ∉ Λ[𝑚]. But we expected
the behavior to be the same, and conjecture the following.
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Conjecture. Let 𝐻 be a finite connected hypergraph. Then there is a closed subset of
Δ, 𝒥 = 𝒥 (𝐻), such that 𝑥(𝑛) converges to a point of 𝒥 almost surely.

Besides this, a question that remains wide open is the distribution of the limit of
𝑥(𝑛). Even for graphs, no progress has been made in the direction.

𝑑 𝑐

𝑏𝑎

Figure 3: Graph named as square

We made some plots for the case of the square, trying to understand the behavior
for the easiest case, and this lead us to the following conjecture.

(a) 𝐵(0) = (4, 8, 4, 8) (b) 𝐵(0) = (200, 400, 200, 400)

Figure 4: Simulations of the distribution of the limit of 𝑥(𝑛) for the square

Conjecture. Let 𝑝(𝐵) be the distribution of the square with initial balls equal to 𝐵 =
(𝑎, 𝑏, 𝑐, 𝑑), and 𝑝∗(𝐵) be the mode of 𝑝(𝐵). Fix 𝑘 = 𝑏

𝑎 and the initial balls equals to

𝐵̄ = (𝑎, 𝑘𝑎, 𝑎, 𝑘𝑎), then lim
𝑎→∞

𝑝∗(𝐵̄) = 1
2 + 2𝑘

.
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